Ph.D. 1971, Princeton; B.A. 1968, California (Berkeley)

Glennys Farrar
Professor Of Physics; Collegiate Professor
Theoretical Particle Physics, Astrophysics and Cosmology
Auger papers not included; [Google Scholar citations on 03/17/22 ]
- “Scaling Laws at Large Transverse Momentum”, S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31, 1153 (1973) [2335] and
“Scaling Laws for Large Momentum Transfer Processes”, Phys. Rev. D 11, 1309 (1975). [1162] - “Particle Ratios in Energetic Hadron Collisions”, J. D. Bjorken and G. R. Farrar, Phys. Rev. D 9, 1449 (1974). [142]
- “Pion and Nucleon Structure Functions Near x=1”, G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 35, 1416 (1975). [673]
- “Copious Direct Photon Production as a Possible Resolution of the Prompt Lepton Puz- zle”, G. R. Farrar and S. C. Frautschi, Phys. Rev. Lett. 36, 1017 (1976). [135]
- “Phenomenology of the Production, Decay, and Detection of New Hadronic States Asso- ciated with Supersymmetry”, G. R. Farrar and P. Fayet, Phys. Lett. B 76, 575 (1978) [3181] and
“Bounds on R-hadron production from calorimetry experiments”, Phys. Lett. B 79, 442 (1978) [159] and
“Searching for the spin-0 leptons of supersymmetry”, Phys. Lett. B 89, 191 (1980) [133] - “The Pion Form-Factor”, G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 43, 246 (1979). [544]
- An alternative to perturbative grand unification: How asymptotically non-free theorues can successfully predict low-energy gauge couplings, N. Cabbibo and G. R. Farrar, Phys. Lett. B 110, 107 (1982) [62].
- Supersymmetry at ordinary energies. II. invariance, Goldstone bosons, and gauge-fermion masses, G. R. Farrar and S. Weinberg, Phys. Rev. D 27, 2732 (1983) [151]
- “Transparency in Nuclear Quasiexclusive Processes with Large Momentum Transfer”, G. R. Farrar, H. Liu, L. L. Frankfurt and M. I. Strikman, Phys. Rev. Lett. 61, 686 (1988). [312]
- Recursive stratified sampling for multidimensional Monte Carlo integration, W. H. Press and G. R. Farrar, Computers in Physics 4,202 (1990). [137]
- “Light gluinos”, G. R. Farrar, Phys. Rev. Lett. 53, 1029 (1984). [97] “Experiments to find or exclude a long lived, light gluino”, Phys. Rev. D 51, 3904 (1995) [153] and
“Detecting gluino-containing hadrons”, Phys. Rev. Lett. 76, 4111 (1996). [191] - “Determining the gluonic content of isoscalar mesons”, F. E. Close, G. R. Farrar and Z. p. Li, Phys. Rev. D 55, 5749 (1997) [271]
- “SUSY and the electroweak phase transition”, G. R. Farrar and M. Losada, Phys. Lett. B406, 60 (1997) [105]
- “Baryon asymmetry of the universe in the minimal Standard Model,” G. R. Farrar and M. E. Shaposhnikov, Phys. Rev. Lett. 70, 2833-2836 (1993) [370] and
“Baryon asymmetry of the universe in the standard electroweak theory,” Phys. Rev. D 50, 774 (1994) [441] - “Soft Yukawa couplings in supersymmetric theories”, F. Borzumati, G. R. Farrar, N. Polonsky and S Thomas, Nucl. Phys. B555,53 (1999). [232]
- “Self-interacting dark matter”, B .D. Wandelt, R. Dave, G. R. Farrar, D. N. Spergel and P. J. Stein- hardt, Sources and detection of dark matter and dark energy in the universe, pp 263-274 (2001). [143]
- “Interacting dark matter and dark energy”, G. R. Farrar and P. J. E. Peebles. Astrophys. J. 604, 1 (2004). [487]
- “The 2dF Galaxy Redshift Survey: luminosity functions by density environment and galaxy type”, D. J. Croton, G. R. Farrar et al, MNRAS 356,1155 (2005) [324] and
“Where do ‘red and dead’ early-type void galaxies come from?”, MNRAS 386, 2285 (2008).[62] - “Window in the dark matter exclusion limits”, Phys. Rev. D 72, 083502 (2005) [90.]
- “Dark matter and the baryon asymmetry”, G. R. Farrar and G. Zaharijas. Phys. Rev. Lett. 96, 041302 (2006). [179]
- “A New Force in the Dark Sector?” G. R. Farrar and R. A. Rosen, Phys. Rev. Lett. 98, 171302 (2007), [101]
“The Speed of the bullet in the merging galaxy cluster 1E0657-56”, V. Springel and G. Farrar. Mon. Not. Roy. Astron. Soc. 380, 911 (2007); [240]
“Constrained Simulation of the Bullet Cluster” C. Lage and G. R. Farrar, Astrophys. J., 787,14 (2014) [48] and
“The Bullet Cluster is not a Cosmological Anomaly”, JCAP 2,38 (2015). [29] - “Giant AGN flares and cosmic ray bursts”, G R Farrar and A. Gruzinov Astrophysical J. 693, 329 (2009). [168]
- “Optical discovery of probable stellar tidal disruption flares”, S. van Velzen, G. R. Farrar, et al., Astrophysical J. 741, 73 (2011) [317] and
“Measurement of the rate of stellar tidal disruption flares,” S. van Velzen and G. R. Farrar, Astrophys. J. 792, 53 (2014) [125] and
“A tidal disruption event coincident with a high-energy neutrino,” R. Stein, S. Van Velzen, M. Kowalski, ... G. Farrar et al., Nature Astron. 5, no.5, 510-518 (2021) [65]. - “A New Model of the Galactic Magnetic Field”, R. Jansson and G. R. Farrar, Astrophys. J., 757,144 (2012) [633] and
“The Galactic Magnetic Field,” Astrophys. J. Lett. 761, L11 (2012) [580]. - “Origin of the ankle in the ultrahigh energy cosmic ray spectrum, and of the extragalactic protons below it”, M. Unger, G. R. Farrar, L. A. Anchordoqui Phys. Rev. D 92 , 123001 (2015) [136] and
“Probing the environments surrounding ultrahigh energy cosmic ray accelerators and their implications for astrophysical neutrinos,” M. S. Muzio, G. R. Farrar and M. Unger, Phys. Rev. D 105, no.2, 023022 (2022). - “Testing hadronic interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory”, The Pierre Auger Collaboration, G. R. Farrar corresponding author, Phys. Rev. Lett. 117,192001 (2016). [223]
- “Multi-messenger Observations of a Binary Neutron Star Merger,”, B. P. Abbott et al. [LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Im- ager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Tele- scopes, High Time Resolution Universe Survey, RIMAS, RATIR and SKA South Africa/MeerKAT], Astrophys. J. Lett. 848, no.2, L12 (2017). [2056]
- “Dark Matter that Interacts with Baryons: Density Distribution within the Earth and New Constraints on the Interaction Cross-section”, D. A. Neufeld, G. R. Farrar and C. F. Mc- Kee, Astrophys. J., 866,111 (2018). [21]
- “Gas-rich dwarf galaxies as a new probe of dark matter interactions with ordinary mat- ter,” D. Wadekar and G. R. Farrar, Phys. Rev. D 103, no.12, 123028 (2021) [14].
- “The Imprint of Large Scale Structure on the Ultra-High-Energy Cosmic Ray Sky”, C. Ding, N. Globus and G. R. Farrar, Astrophysical J. Letters, 913, L13, (2021) [5].
- “Resonant Scattering between Dark Matter and Baryons: Revised Direct Detection and CMB Limits,”, X. Xu and G. R. Farrar, [arXiv:2101.00142 [hep-ph]] and
“Constraints on GeV Dark Matter interaction with baryons, from a novel Dewar exper- iment,” [arXiv:2112.00707 [hep-ph]]. - A Stable Sexaquark: Overview and Discovery Strategies, G R Farrar, [arXiv:2201.01334 [hep-ph]].
Contact Information
Glennys Farrar
Professor Of Physics; Collegiate Professor gf25@nyu.edu 726 Broadway, Room 954New York, NY 10003
Phone: (212) 992-8787