
 

 

 

 

Revisiting the Secretary Problem 
 

 

 

 

 

 

 

 

 

 

 

Steven J. Brams 

Department of Politics 

New York University 

New York, NY  10012 

USA 

steven.brams@nyu.edu  

 

D. Marc Kilgour 

Department of Mathematics 

Wilfrid Laurier University 

Waterloo, Ontario  N2L 3C5 

CANADA 

mkilgour@wlu.ca 

 

 

 

 

 

mailto:steven.brams@nyu.edu
mailto:mkilgour@wlu.ca


 

2 

 

 
Abstract 

The venerable Secretary Problem asks how a decision maker (DM) should select one of n 

candidates, who come up randomly, when the only information available is each 

candidate’s strict rank within the set of previous applicants. Moreover, DM may select 

only the current candidate. Our illustrative case has n = 9 candidates, for which the 

Standard Method is to reject outright the first 3 candidates and then choose the first of the 

4th through 8th candidates who is better than any of the first three, and the 9th candidate if 

none of the 4th through 8th candidates satisfies this condition. We compare the Standard 

Method with two other selection methods that change the conditions under which DM 

decides:  

Reserve Method. Same as the Standard Method, except that it assumes the best of the first 

3 candidates is held in reserve and chosen if none of the 4th through 8th (Version A) or the 

4th through 9th (Version B) candidates is better. 

Score Method. Each candidate receives a score between 0 and 1; scores are known to be 

uniformly distributed. DM decides, on each round, a numerical threshold and selects a 

candidate that exceeds it. If none does, the 9th candidate is selected. We assume that the 

DM uses thresholds that maximize the expected score of the selected candidate.  

The Standard Method gives DM a probability of 41% of selecting the best candidate, 

whereas the Reserve Methods substantially raise this probability to 70 – 74%—

depending on whether Version A or B is used—while the Score Method raises it to 55%. 

Thus, the other methods, especially the Reserve Methods, outperform the Standard 

Method in selecting the best candidate, but the Score Method requires seeing 

significantly fewer candidates—an average of 4.3, compared with an average of 6.3 for 

the Standard Method and 6.3 and 6.7 for the two versions of the Reserve Method.  

We also discuss a third criterion, the average rank of the candidate selected, which is 

about 1.5 for the Reserve Methods and the Score Method but 2.9 for the Standard 

Method. In sum, the superiority of the alternative methods over the Standard Method 

reflects the severity of the restrictions placed on the original Secretary Problem, 

suggesting it is time to revisit the assumptions of this method and consider realistic 

alternatives.   
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1.  Introduction 

 

The Secretary Problem became famous when Martin Gardner (1960) discussed it in his 

February 1960 Scientific American column. A decision maker (DM) must select one 

candidate for a vacant position under the following conditions: 

• There are n candidates, where n is known. 

• DM can strictly rank any subset of the candidates from best to worst but has 

no additional information about candidate quality. 

• The candidates are interviewed sequentially and in random order, where every 

one of the n! orders is equiprobable. 

• Immediately after being interviewed, a candidate must be selected or rejected 

and, if rejected, cannot be selected later. 

DM’s objective is to maximize the probability of selecting the best candidate.  

The Secretary Problem has other names, such as the marriage problem, because it 

can be viewed as choosing a spouse under the condition that a rejected candidate cannot 

be reconsidered later. For an overview of the problem, its solution, and extensions, see 

Wikipedia (2023), Freeman (1983), and Ferguson (1989). It continues to appear in 

different formulations in the literature: Bruss (1984) posits n to be a random variable and 

so not known, as assumed here; Hahn et al. (2022) use it as a context for principal-agent 

information transmission; and Li and Toda (2022) incorporate certain costs in their 

model. Each of the latter two papers discusses some of the considerable recent literature, 

which has not stopped growing since Gardner first popularized the problem and its 

striking solution. 

The procedure that has been demonstrated to solve the problem, which we call the 

Standard Method, is to reject outright the first r < n candidates and then choose the first 

subsequent candidate who is better than any of the first r. If this condition is not met after 

candidate n – 1 is interviewed, the nth candidate must be selected.  

In addition to studying the Standard Method in general, we consider in detail the 

case of n = 9 candidates, where the Standard Method prescribes rejecting r = 3 candidates 

out of hand and then selecting the first candidate preferred to any of those 3. As we show, 

the best candidate is selected with probability 0.406. As n approaches infinity, the 

proportion of candidates that DM rejects initially tends toward 1/e, or about 0.37, which 

is also, surprisingly, the limiting probability that DM accepts the best candidate.       

We compare the Standard Method with two alternatives that significantly alter 

features of the problem. In preparation, we ask two further questions about the Standard 

Method. First, how many candidates are likely to be interviewed? Second, what is the 

probability of ending up with a good—but not necessarily the best—candidate? We 

address the first question with an expected-value calculation and the second with an 

ordinal comparison of candidates.   
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Initially, it would appear unwise, as prescribed by the Standard Method, for DM 

to reject outright candidates, one of whom may turn out to be the best. As our first 

alternative method, we propose the Reserve Method, in which the best of the first 3 

rejected candidates is kept in reserve and turned to later if and only if none of candidates 

4 – 8 (or 4 – 9)—there are two variants—is better. Note that the Reserve Method requires 

that the rules be revised so that the best of the first 3 candidates, automatically rejected 

under the Standard Method, is available for selection if no later candidate is better.  

The first variant of the Reserve Method is that the best of the first 3 candidates is 

selected if none of candidates 4 – 8 is better—instead of defaulting to the selection of the 

9th candidate, as under the Standard Method. But if a better candidate does turns up 

among the 4th through 8th candidates, that candidate will be selected, exactly as under the 

Standard Method.  

The second variant of the Reserve Method is identical to the first, except that the 

reserve candidate is selected only if none of candidates 4 – 9 is better. In effect, there is a 

runoff between the reserve candidate and the 9th candidate, with the better one selected 

instead of automatically selecting the 9th candidate, as under the first variant.1 

Our second alternative method, the Score Method, “cardinalizes” the problem. 

Each candidate is tested; the test scores are assumed uniformly distributed on a 0-1 scale 

of increasing quality.2  

We compare three methods—Standard, Reserve (variants A and B), and Score 

according to three criteria: 

 

(1) Probability of selecting the best candidate; 

(2) Expected number of candidates to be interviewed; and 

(3) Expected quality of the candidate selected. 

The usual standard is (1), as already discussed, but (2) is important for a DM whose time 

to assess the candidates is valuable. Criterion (3) is ordinal for the Standard and Reserve 

Methods but cardinal (i.e., quantitative) for the Score Method. Obviously, (1) and (3) are 

related. 

 
1 Smith and Deely (1975) calculate how many candidates DM must evaluate, and whose rankings he must 

remember, before reaching a prespecified probability of finding the best among all candidates. This rule 

differs from ours, wherein DM stops when a candidate is better than any candidate rejected at the start; if 
there is no such candidate, the better of the candidate who remains and the best of the rejected candidates is 

selected. 
2 This approach was taken by Sakaguchi (1961); see also Wikipedia (2023), where it is called the dynamic 

programming method. The first candidate whose score exceeds a threshold is selected, where the threshold 

may depend on the round. We find thresholds, which do indeed depend on the round, that are optimal in the 

following sense: They maximize the expected score of the selected candidate. These thresholds decline as 

the number of remaining candidates decreases, which is to say that DM becomes less fussy as the pool of 

candidates shrinks. 
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All three methods, because of their sequential nature, are vulnerable to the 

premature choice of a candidate. This happens when a candidate, who is good enough to 

be selected, precedes a candidate who is the best. This is especially problematic for the 

Standard Method, which rejects 1/3 of the candidates out of hand.  

After discussing the setup of the Standard Method in section 2, we analyze and 

compare the three methods in section 3. The Standard Method finds the best candidate 

with a probability of 41%; this probability is 70% and 74% for Reserve Methods A and B 

and 55% for the Score Method.  

On the other hand, the Score Method requires significantly fewer candidates be 

assessed than the other two methods (an average of 4.3, compared with 6.3 for the 

Standard Method and 6.3 and 6.7 for the two versions of the Reserve Method). The 

Reserve and Score Methods are comparable in expected quality, however; they select a 

candidate with an average rank of about 1.5 versus 2.9 for the Standard Method. In the 

concluding section, we weigh the advantages and disadvantages of each method. 

2.  The Standard Method 

First, we show how to set the parameter r of the Standard Method, in which the first r of 

the n candidates are assessed but not selected. Instead, DM selects the first of candidates 

r + 1, r + 2, …, n – 1 who is preferred to all the first r candidates, or candidate n if none 

of these candidates is preferred to all the first r candidates.3 

 We choose r to maximize the probability that the best candidate is selected. To 

calculate this probability, note that any candidate j is best with probability 1/n. Fix r, and 

let qj be the conditional probability that candidate j is selected given that candidate j is 

best overall. Clearly, q1 = … = qr = 0. Moreover, qr+1 = 1, because if candidate r + 1 is 

best overall, then she is certainly better than any of the first r candidates. Given that 

candidate r + 2 is best, she is selected whenever any of the first r candidates is preferred 

to candidate r + 1, which occurs with probability r/(r + 1). For j > r + 1, given that 

candidate j is the best candidate, she is selected when the best preceding candidate is 

among the first r, which occurs with probability r/(j – 1).  

 Thus, when there are n candidates, the (unconditional) probability that the best 

candidate is selected is 

𝑄(𝑟) =  
1

𝑛
[0 +  0 + ⋯ + 0 + 1 + 

𝑟

𝑟 + 1
+

𝑟

𝑟 + 2
+ ⋯ +

𝑟

𝑛 − 1
] 

for any r = 1, 2, … n – 1. This expression can be written  

 
3 For a different perspective on this method when n is not known, see Bruss (1984). But n will be known if 

the number of candidates is large, and DM (assumed male) must limit himself to seeing no more than n 

candidates (assumed female). This gender distinction is for convenience only; we could as well make DM 

female and the candidates male.      
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𝑄(𝑟) =  
𝑟

𝑛
∑

1

𝑖

𝑛−1

𝑖=𝑟

=
𝑟

𝑛
[𝐻(𝑛 − 1) − 𝐻(𝑟 − 1)] 

where H(j) is the sum of the first j terms of the harmonic series, 𝐻(𝑗) =  ∑
1

𝑖

𝑗
𝑖=1 . 

For specific values of n, it is easy to evaluate H(j) and thus Q(r). For n = 9, the 

table below shows that the value of r that maximizes Q(r) is r = r* = 3. 

 

r  1 2 3 4 5 6 7 8 

Q(r)  0.3020 0.3817 0.4060 0.3931 0.3525 0.2897 0.2083 0.1111 

Hence, the probability that the Standard Method selects the best candidate in this 

representative case is Q(r*) = 0.4060, where r* = 3.4 

3.  Comparing the Three Methods 

 

Standard Method 

 

We have already shown that, in our example with n = 9, the Standard Method should be 

applied with r = 3. In this case, the probability that the best candidate is selected is 𝑄 =

 
1

9
∑ 𝑞𝑗 =9

𝑗=1
1

9
(0 + 0 + 0 + 1 + 

3

4
+ 

3

5
+

3

6
+

3

7
+

3

8
) =

341

840
, or Q = 0.4060. 

 

Our analysis of the Standard Method begins with the determination of pj, the 

(unconditional) probability that the jth candidate is selected. Because the first r candidates 

are rejected out of hand, it is clear that pj = 0 for j = 1, 2, …, r. Set n = 9 and r = 3, and 

consider the 4th round. The probability that the 4th candidate is the best so far is the 

probability that she is better than any of the first 3 candidates, which is ¼, so p4 = ¼.  

 

Now consider when the 5th candidate is selected. Two conditions must be 

satisfied. First, the 4th candidate must not have been selected. Second, the 5th candidate 

must be the best of the first 5. Thus, of the five candidates now under consideration, the 

5th must be first-ranked, and the second-ranked must be one of candidates 1, 2, and 3. Of 

the 5! permutations of {1, 2, 3, 4, 5}, 3 × 3! satisfy these conditions. Thus, the probability 

that the 5th candidate is selected is p5 = 3 × 3!/5! = 3/20.   

 

By similar reasoning, it follows that, for j = 4, 5, ... 8,   

  

 
4 Substituting H(n - 1) – H(r – 1) ≈ ln n – ln r into Q(r) and treating r as a continuous variable permits 

maximization of Q(r) using calculus, resulting in the well-known formula r* ≈ n/e, where e is the base of 

the natural logarithms. 
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𝑝𝑗 =
3 × (𝑗 − 2)!

𝑗!
=

3

𝑗(𝑗 − 1)
 

 

In particular, the probability that the 8th candidate, or some prior candidate, is chosen is  

 

1/4 + 3/20 + 1/10 + 1/14 + 3/56 = 5/8. 

 

Hence, the probability that the Standard Method selects the 9th candidate, which occurs if 

and only if no previous candidate was selected, is p9 = 1 – 5/8 = 3/8. In the table below, 

we show the selection probabilities for candidates 4 – 9. 

 

 

Candidate 4 5 6 7 8 9 

Selection 

Probability 

p4 = 1/4 = 

0.250 

p5 = 3/20 

= 0.150 

p6 = 1/10 

= 0.100 

p7 = 1/14 

= 0.071 

p8 = 3/56 

= 0.054 

p9 = 3/8 

= 0.375 

 

Note that the “best so far” rule for choosing a candidate would select the 9th candidate 

with probability 1/24 = 0.042, as can be seen by substituting j = 9 in the formula for pj 

above. The 9th candidate is selected if she either meets the “best so far” condition or if the 

best candidate is one of the first 3, which occurs with probability 1/3. Summing these 

probabilities gives p9 = 1/24 + 1/3 = 3/8. For general values of n and r satisfying 0 < r ≤ n 

– 2, it can be verified that p1 = … = pr = 0, pj = r/(j(j – 1)) for j = r + 1, …, n – 1, and pn = 

r/(n – 1). If 0 < r = n – 1, then p1 = … = pn – 1 = 0 and pn = 1.  

 

Another measure of the quality of a selection method is E[C], the expected 

number of candidates that DM evaluates before selecting one. In our example with n = 9 

and r = 3, we note that  

 

(i) three candidates are rejected outright at the beginning; 

(ii) if candidate j is selected, where j = 4, 5, 6, 7, or 8, then DM must have 

evaluated exactly j candidates; and 

(iii) if candidate 9 is selected, then DM must have evaluated exactly 8 

candidates, because candidate 9 is selected exactly when all previous 

candidates are rejected.  

 

It follows that  

 

𝐸[𝐶] = ∑ 𝑗 ∙ 𝑝𝑗 + 8 ∙ 𝑝9 = 4 ∙
1

4
+ 5 ∙

3

20
+ 6 ∙

1

10
+ 7 ∙

1

14
+ 8 ∙

3

56
+ 8 ∙

3

8
=

879

140

8

𝑗=4

 

 

so that E[C] = 6.2786. On average, DM must see about 6.3 candidates before selecting 

one of them – almost 70% of the 9 candidates.  

 

For general values of n and r satisfying 0 < r ≤ n – 1, it is easy to verify that  
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𝐸[𝐶] = 𝑟[1 + 𝐻(𝑛 − 2) − 𝐻(𝑟 − 1)] 

where, as before, H(j) is the jth partial sum of the harmonic series, 𝐻(𝑗) =  ∑
1

𝑖

𝑗
𝑖=1  and 

H(0) = 0. 

 

 Our third measure of the quality of the Standard Method is the expected quality of 

the candidate selected. Because we have only ordinal information, we use E[R] to 

measure expected quality, where R is a random variable representing the rank of the 

candidate selected, and E[R] is its expected value. For instance, if the method manages to 

select the best overall candidate, then R = 1. We already know that Standard Method 

finds the best overall candidate less than half the time, so R > 1 must occur frequently.  

  

To find the expected rank of the candidate selected by the Standard Method, we 

find the conditional probability, tjk, that R = k, that is, that the selected candidate has rank 

k (among all candidates), given that the selected candidate is the jth candidate. For 

instance, set n = 9 and r = 3, and consider candidate j = 4. If candidate 4 is selected, then 

she must be preferred to candidates 1, 2, and 3, but she may in fact be ranked as low as 

6th among all candidates. Thus, t4k > 0 whenever k = 1, 2, …, or 6.  

 

In contrast, t8k > 0 only when k = 1 or 2, because candidate 8 can be selected only 

if she is better than all 7 preceding candidates. In contrast, if candidate j = 9 is selected, 

her rank may be 1st, 2nd, …, or 9th. 

 

 For fixed j = 4, 5, 6, 7, or 8, we have noted that tjk > 0 for k = 1, 2, …, 10 – j. 

There are 
3

𝑗(𝑗−1)
∙ 9! (equally probable) rankings of the candidates in which the Standard 

Method selects candidate j. (Of candidates 1, 2, … j, candidate j must be top-ranked and 

candidate 1, 2, or 3 must be second-ranked.) If k = 1, 2, …, 10 – j, candidate j is kth in 

exactly 
(9−𝑗)!

(10−𝑗−𝑘)!
∙

3

𝑗−1
∙ (9 − 𝑘)! of these rankings. It follows that the conditional 

probability R = k, that is, that candidate j is ranked kth, given that j is chosen, is 

 

𝑡𝑗𝑘 =
𝑗 ∙ (9 − 𝑗)! ∙ (9 − 𝑘)!

(10 − 𝑗 − 𝑘)! ∙ 9!
, 𝑗 = 4, 5, 6, 7, 8; 𝑘 = 1, 2, … , 10 − 𝑗. 

 

Now consider j = 9. The Standard Method selects candidate 9 if and only if the 

top-ranked among candidates 1, 2, …, 8 is one of candidates 1, 2, and 3. There are         
3

8
∙ 9! rankings satisfying this condition. For each k = 1, 2, …, 9, candidate 9 is ranked kth 

in exactly 
3

8
∙ 8! Of these, it follows that 

𝑡9𝑘 =  
1

9
, 𝑘 = 1, 2, … , 9. 

 

The values of tjk are given in Table 1. 

 

j k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 pj 



 

9 

 

4 56

126
 

35

126
 

20

126
 

10

126
 

4

126
 

1

126
 -- -- -- 1

4
 

5 70

126
 

35

126
 

15

126
 

5

126
 

1

126
 -- -- -- -- 3

20
 

6 56

84
 

21

84
 

6

84
 

1

84
 -- -- -- -- -- 1

10
 

7 28

36
 

7

36
 

1

36
 -- -- -- -- -- -- 1

14
 

8 8

9
 

1

9
 -- -- -- -- -- -- -- 3

56
 

9 1

9
 

1

9
 

1

9
 

1

9
 

1

9
 

1

9
 

1

9
 

1

9
 

1

9
 

3

8
 

 

Table 1: Standard Method: Conditional probability that R = k, given that candidate 

j is selected 

 

Of course, the unconditional probability that candidate j is selected and that she is kth-

ranked is pj ∙ tjk. These values are shown as decimals in Table 2. 

 

 

j k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 

4 .1111 .0694 .0397 .0198 .0079 .0020 -- -- -- 

5 .0833 .0417 .0179 .0060 .0012 -- -- -- -- 

6 .0667 .025 .0071 .0012 -- -- -- -- -- 

7 .0556 .0139 .0020 -- -- -- -- -- -- 

8 .0476 .0060 -- -- -- -- -- -- -- 

9 .0417 .0417 .0417 .0417 .0417 .0417 .0417 .0417 .0417 

Pr{k} .4060 .1976 .1083 .0687 .0508 .0437 .0417 .0417 .0417 

 

Table 2: Standard Method: Unconditional probability that candidate j is selected and 

R = k 

 

From Table 2, one can calculate 𝐸[𝑅] =  ∑ 𝑘 ∙ Pr{𝑘} = 9
𝑘=1 2.9167. Thus, under the 

Standard Method the candidate selected is, on average, just slightly better than the 3rd-

ranked candidate. 

 

For general values of n and r satisfying 0 < r ≤ n – 1, it can be seen that   

 

𝑡𝑗𝑘 =
𝑗 ∙ (𝑛 − 𝑗)! ∙ (𝑛 − 𝑘)!

(𝑛 + 1 − 𝑗 − 𝑘)! ∙ 𝑛!
, 𝑗 = 𝑟 + 1, … , 𝑛 − 1; 𝑘 = 1, 2, … , 𝑛 + 1 − 𝑗; 

𝑡𝑛𝑘 =  
1

𝑛
, 𝑘 = 1, 2, … , 𝑛. 

 

Reserve Method  

 

The Reserve Method is almost identical to the Standard Method. The only 

difference is that the best of the first 3 candidates is held in reserve and will be selected if 
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none of candidates 4 – 8 is selected.5 In fact, there are two variants of the Reserve 

Method, which we earlier called Version A and Version B. We next compare them with 

each other as well as with the Standard Method.  

 

Reserve Method A: If none of candidates 4 – 8 is selected, the reserve candidate (the best 

of candidates 1, 2, and 3) is selected without assessing candidate 9.  

 

Reserve Method B: If none of candidates 4 – 8 is selected, then candidate 9 is assessed, 

and the preferred of candidate 9 and the reserve candidate is selected.  

 

Observe that Reserve Method B requires one more assessment than Reserve Method A. It 

selects candidate 9 if she is the best candidate overall (not just the best of candidates 1, 2, 

and 3), rather than being the default candidate if none of candidates 4 – 8 is better than 

candidates 1, 2, or 3.  Below we denote the reserve candidate by R. 

 

 We now proceed to calculate these probabilities, QA and QB, analogous to Q(r) for 

the Standard Method, for the two Reserve Methods. First, for each candidate who may be 

selected, we calculate the conditional probability that she is selected, given that she is the 

best candidate overall. These probabilities are tabulated below. 

 

j 4 5 6 7 8 9 R 

qj
A 1 3

4
 

3

5
 

3

6
 

3

7
 

0 1 

qj
B 1 3

4
 

3

5
 

3

6
 

3

7
 

3

8
 

1 

 

For the Standard Method, each candidate is best overall with probability 1/9, so 

candidate R is best overall with probability 1/3. Therefore, the probability that the best 

candidate is selected under Reserve Method A is 

 

 𝑄𝐴 =
1

3
𝑞𝑅

𝐴 +  
1

9
∑ 𝑞𝑗

𝐴 =9
𝑗=4

1

3
∙ 1 + 

1

9
(1 + 

3

4
+ 

3

5
+

3

6
+

3

7
+ 0) =

2560

3780
, or QA = 0.6976.  

 

Similarly, the probability that the best candidate is selected using Reserve Method B is  

 

𝑄𝐵 =
1

3
𝑞𝑅

𝐵 + 
1

9
∑ 𝑞𝑗

𝐵 =9
𝑗=4

1

3
∙ 1 + 

1

9
(1 + 

3

4
+ 

3

5
+

3

6
+

3

7
+

3

8
) =

207

280
, or QB = 0.7393.  

 

For general values of n and r satisfying 0 < r ≤ n – 2, it can be verified that 

𝑄𝐴 =
1

𝑟
+

𝑟

𝑛
[𝐻(𝑛 − 2) − 𝐻(𝑟 − 1)] 

 
5 This seems to be the method that the German astronomer, Johannes Kepler, used after his first wife died 

of cholera in 1611. Over the next two years he interviewed 11 candidates for a new wife and eventually 

chose the 5th, apparently having kept her in reserve so he could return to her if none of the later candidates 

proved better or was no longer available (Ferguson, 1989). 



 

11 

 

𝑄𝐵 =
1

𝑟
+

𝑟

𝑛
[𝐻(𝑛 − 1) − 𝐻(𝑟 − 1)] 

 

 Next, we note that the probability of selecting the jth candidate under Reserve A, 

pj
A, and the parallel probability under Reserve B, pj

B, are quite different from their 

probabilities in the previous table. For example, compare q9
B = 3/8 and p9

B = 1/24: The 

former is the probability that none of candidates 4 – 8 is better than candidates 1, 2, and 3 

(i.e., candidate 9 is the best so far, compared with candidates 4 – 8), whereas the latter is 

the probability that candidate 9 is better than all the earlier candidates (the best overall, 

including candidates 1, 2, and 3).     

  

j 4 5 6 7 8 9 R 

pj
A 1

4
 

3

20
 

1

10
 

1

14
 

3

56
 

0 3

8
 

pj
B 1

4
 

3

20
 

1

10
 

1

14
 

3

56
 

1

24
 

1

3
 

 

 

For general values of n and r satisfying 0 < r ≤ n – 2, it can be verified that  

 

p1
A = … = pr

A = 0, pj
A = r/(j(j – 1)) for j = r + 1, …, n – 1, and pR

A = r/(n – 1) 

 

Similarly, 

 

p1
B = … = pr

B = 0, pj
B = r/(j(j – 1)) for j = r + 1, …, n, and pR

B = 1/r 

 

The expected number of candidates that DM must assess before selecting a 

candidate is our second criterion for comparing the different methods. We calculate 

E[CA] for Reserve Method A and E[CB] for Reserve Method B, just as we calculated 

𝐸[𝐶] for the Standard Method. Note that the maximum number of assessments for 

Method A is 8 and for Method B is 9. For Method A we have  

 

𝐸[𝐶𝐴] = ∑ 𝑗 ∙ 𝑝𝑗
𝐴 + 8 ∙ 𝑝𝑅

𝐴 = 4 ∙
1

4
+ 5 ∙

3

20
+ 6 ∙

1

10
+ 7 ∙

1

14
+ 8 ∙

3

56
+ 8 ∙

3

8
=

879

140

8

𝑗=4

 

 

so that E[CA] = 6.2786 = E[C]. On average, DM must see about 6.3 candidates before 

selecting one, exactly the same as the Standard Method. For Reserve Method B,  

 

𝐸[𝐶𝐵]

= ∑ 𝑗𝑝𝑗
𝐵 + 9𝑝𝑅

𝐵 = 4 ∙
1

4
+ 5 ∙

3

20
+ 6 ∙

1

10
+ 7 ∙

1

14
+ 8 ∙

3

56
+ 9 ∙

1

24
+ 9 ∙

1

3
=

1543

280

9

𝑗=4
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so that E[CB] = 6.6536 > E[CA] = E[C]. Thus, on average, DM must see almost 6.7 

candidates before making a selection using Reserve Method B. Clearly, the higher 

probability Q for Method B comes at the cost of a higher value of E[C].   

 

For general values of n and r satisfying 0 < r ≤ n – 2, it can be verified that 

 

𝐸[𝐶𝐴] = 𝑟[1 + 𝐻(𝑛 − 2) − 𝐻(𝑟 − 1)] = 𝐸[𝐶] 
 

𝐸[𝐶𝐵] = 𝑟[𝐻(𝑛 − 1) − 𝐻(𝑟 − 1)] + 
𝑛

𝑟
 

 

 Our third criterion for comparing the different methods is the expected rank of the 

candidate each method selects, denoted E[R]. For the Reserve Methods, we must revise 

Tables 1 and 2. These straightforward revisions are shown in the Appendix and are 

summarized by tjkA = tjkB = tjk for j = r +1, r + 2, …, n – 1; k = 1, 2, … n + 1 – j, tR1
A = (n 

– 1)/n, tR2
A = 1/n, t92

B = 1, and tR2
B = 1. 

 

We have already seen that the Reserve Methods dramatically increase the 

probability of selecting the best candidate, which equals QA = 0.6976 under Reserve 

Method A and QB = 0.7396 under Reserve Method B (compared with Q = 0.4060 under 

the Standard Method). These improvements are reflected in equally dramatic 

improvements in the expected rank of the selected candidate. Specifically, E[RA] = 

1.4583 under Reserve Method A and E[RB] = 1.4167 under Reserve Method B, compared 

to E[R] = 2.9167 for the Standard Method. Thus, the Reserve Methods reduce the 

expected rank of the selected candidate from almost 3 to less than 1.5, and nearly double 

the probability of selecting the best candidate, from 0.41 to about 0.70. Method B does a 

little better than Method A in quality, but the price is an increase in the expected number 

of candidates.  

 

Score Method 

 

Using the Score Method, like the Standard Method, requires DM to make an up-or-down 

assessment of each candidate, without holding anybody in reserve. However, it relies not 

on relative comparisons of candidates but a cardinal evaluation of each one, compared to 

an absolute standard. How high should a candidate’s score be to justify her selection? On 

average, how good will the selected candidate be?   

 

The Score Method associates each of the n > 1 candidates with a numerical score, 

or measure of quality, which we assume to be a number between 0 and 1. The score of 

candidate j, denoted xj, is the realization of a random variable, Xj, that is uniformly 

distributed on (0, 1). Candidates’ scores are assumed to be independent. DM must decide 

whether or not to select a candidate immediately after her score is known. Comparisons 

with previous candidates, as under the Standard and Reserve Methods, are irrelevant. 

 

The Secretary Problem with scores was addressed earlier (Sakaguchi, 1961), but 

we provide a complete development for comparison with the Standard and the Reserve 
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Methods, based on the aforementioned criteria. Because the problem is now cardinal, our 

“average quality” criterion can be measured cardinally.   

 

The Score Method is the implementation of a threshold procedure, defined by an 

n-vector, a = (a1, a2, …, an – 1, an), where 0 < aj < 1 for j = 1, 2, …, n – 1 and an = 0. The 

procedure is to select candidate 1 if x1 > a1; otherwise, reject candidate 1 and move on to 

candidate 2. In general, candidate j is selected if candidates 1, 2, …, j – 1 have been 

rejected and xj > aj. Note that forcing an = 0 ensures that candidate n is selected if 

candidates 1, 2, …, n – 1 are rejected, guaranteeing that the threshold procedure defined 

by a always selects one of the candidates. 

 

Example 1: Suppose that n = 3 and consider the threshold vector (0.8, 0.6, 0). Candidate 

1 is selected if x1 > 0.8; otherwise, x1 ≤ 0.8, candidate 1 is rejected, and candidate 2 is 

considered. Candidate 2 is selected if x2 > 0.6; if x2 ≤ 0.6, candidate 2 is rejected, and 

candidate 3 is automatically selected (i.e., she is the default candidate). Because the 

probability that a candidate’s score exceeds a is 1 – a, it follows that candidate 1 is 

selected with probability 0.2, candidate 2 is selected with probability 0.8 × 0.4 = 0.32, 

and candidate 3 is selected with probability 1 – 0.2 – 0.32 = 0.48.  

 

For a general threshold procedure, a, denote the event that candidate j is selected 

by Aj. Clearly, exactly one of the events A1, A2, …, An must occur. For j = 1, 2, …, n, the 

probability of Aj is  

Pr{𝐴𝑗} = 𝑝𝑗
𝑆

= (1 − 𝑎𝑗) ∏ 𝑎𝑖

𝑖<𝑗

 

where the product is 1 if j = 1. In particular, p1
S = 1 – a1, p2

S = a1 (1 – a2), p3
S = a1 a2 (1 – 

a3), …, and, because an = 0, pn
S = a1 a2 … an – 1. For Example 1 with n = 3 and a = (0.8, 

0.6, 0), these formulas agree with our direct calculation of p1
S = 0.2, p2

S = 0.32, and p3
S = 

0.48. 

 

A constant threshold procedure is an easy-to-understand case. For any t such that 

0 < t < 1, define a(t) = (t, t, …, t, 0); in other words, aj = t for j = 1, 2, …, n – 1, and an = 

0. For a(t), p1
S = 1 – t, p2

S = t (1 – t), p3
S = t2(1 – t), …, pn – 1

S = tn – 2(1 – t), and pn
S = tn – 1. 

 

We wish to design a threshold procedure so that the score of the candidate 

selected is as high as possible. Given that candidate 1 is selected, candidate 1’s score, X1, 

is uniformly distributed on (a1, 1), so the expected score of candidate 1, given that she is 

selected, is E[X1 | A1] = ½ (1 + a1). Similarly, for all j = 1, 2, …, n, E[Xj | Aj] = ½ (1 + aj). 

It follows that the expected score of the candidate selected is  

 

𝐸[𝑋] = ∑ 𝐸{𝑋𝑗|𝐴𝑗] Pr{𝐴𝑗} =
1

2
∑(1 − 𝑎𝑗

2) ∏ 𝑎𝑖

𝑖<𝑗

𝑛

𝑗=1

𝑛

𝑗=1

 

 

where, because an = 0, the last term of the summation is  

 
(1 − 𝑎𝑛

2)𝑎1𝑎2 ⋯ 𝑎𝑛−1 =  𝑎1𝑎2 ⋯ 𝑎𝑛−1 
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 For Example 1, with n = 3 and a = (0.8, 0.6, 0), it is easy to see that the expected 

score of candidate 1, given that candidate 1 is selected (probability 0.2), is 0.9. Similarly, 

the expected score of candidate 2, given that candidate 2 is selected (probability 0.32), is 

0.8. Otherwise (probability 0.48), candidate 3 is selected with expected score 0.5. Thus, 

E[X] = (0.9 × 0.2) + (0.8 × 0.32) + (0.5 × 0.48) = 0.676, which agrees with the formula 

above. 

 

For the constant threshold procedure a(t), it is easy to verify that E[X] = 1/2 [1 + t 

– tn]. By calculus, E[X] is maximized when t = n-1/(n – 1). For instance, when n = 9, the 

maximum occurs at t = 0.760, where the value of E[X] is 0.838. Thus, when there are n = 

9 candidates, DM can ensure that the expected score of the selected candidate is .838 by 

simply selecting the first candidate whose score exceeds 0.76, and taking candidate 9 if 

none of the first eight candidates meets this condition. 

 

To determine the optimal threshold vector, s = (s1, s2, …, sn – 2, sn – 1, 0) — defined 

as the one that maximizes E[X] — we begin by studying the function f(x) = 1 – x2 + xw, 

where w is fixed. The maximum of f(x) occurs at x = w/2 and is equal to F(w) = 1 + w2/4. 

Now consider the dependence of E[X] on the threshold vector (a1, a2, …, an – 2, x, 0), 

where a1, a2, …, an- 2 are fixed and positive. It is easy to see that  

 

𝐸[𝑋] =  𝐾𝑛−1 +
1

2
𝑎1𝑎2 ⋯ 𝑎𝑛−2[(1 − 𝑥2) + 𝑥] 

 

where Kn – 1 does not depend on x. Taking w = wn = 1, we see that E[X] is maximized at     

x = sn – 1 = wn/2 = ½, and that the maximum value of E[X] can be obtained by substituting 

F(wn) = F(1) = 5/4 for the expression in square brackets. 

 

Now assume that an – 1 = sn – 1 and consider the dependence of E[X] on x = an – 2. If 

a1, a2, …, an- 3 are fixed and positive, then we have that  

 

𝐸[𝑋] =  𝐾𝑛−2 + 𝑎1𝑎2 ⋯ 𝑎𝑛−3[(1 − 𝑥2) +  𝑥𝑤𝑛−1] 
 

where wn  – 1 = F(wn) and, as previously, Kn – 2 is constant. It follows that E[X] is 

maximized by x = sn – 2 = wn – 1/2, and that the maximum of the expression in square 

brackets is wn – 2 = F(wn  – 1) = 1 + wn  – 1
2/4. Substituting, sn – 2 = 5/8 and wn – 2 = 89/64 = 

1.3906. 

 

This procedure can be continued, producing sj = wj+1/2 and wj = F(wj+1), which is 

equivalent to  

 

𝑠𝑗 =  
1

2
(1 + 𝑠𝑗+1

2) 

 

for j = n – 1, n – 2, …, 2, 1, starting with sn = 0.  For n = 9, the optimal threshold vector s 

is given by 
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s1 s2 s3 s4 s5 s6 s7 s8 s9 

0.836 0.820 0.800 0.775 0.742 0.695 0.625 0.5 0 

 

The value of E[X] achieved by s – the maximum expected score that can be attained by 

any threshold procedure – is F(s1) = ½ (1 + s1
2) = 0.8498.   

 

Denote by CS(a) the number of candidates assessed by the Score Method with 

threshold vector a. If the event Aj occurs (i.e., candidate j is selected), then j candidates 

were assessed so CS = j. The expected number of candidates assessed, E[CS(a)], is 

therefore 

𝐸[𝐶𝑆(𝒂)] = ∑ 𝑗 ∙ 𝑝𝑗
𝑆

𝑗

𝑗=1

= 1 ∙ (1 − 𝑎1) + 2 ∙ 𝑎1(1 − 𝑎2) + ⋯ + 𝑛 ∙ 𝑎1𝑎2 ⋯ 𝑎𝑛−1 

 

This series simplifies to 

 

𝐸[𝐶𝑆(𝒂)] = 1 + 𝑎1 + 𝑎1𝑎2 + ⋯ + 𝑎1𝑎2 ⋯ 𝑎𝑛−1 

 

In Example 1, it is easy to see that E[CS(a)] = 2.28.  

 

For the constant threshold procedure a(t), it is easy to verify that E[CS] = 1 + t + t2 

+ … + tn – 1 = (1 – tn)/(1 – t). As is to be expected, smaller values of t correspond to 

smaller values of C.  For the quality-maximizing constant threshold t = 0.760, E[CS(a(t))] 

= 3.812. The optimal threshold vector s produces E[CS(s)] = 4.2384. 

 

For any j = 1, 2, …, n, let Bj be the event that candidate j’s score is higher than the 

score of any other candidate. Recall that Aj is the event that candidate j is selected. Our 

third measure, Pr{QS}, satisfies  

 

Pr {𝑄𝑆} = Pr {⋃ (𝐴𝑗 ∩ 𝐵𝑗)𝑛
𝑗=1 } =  ∑ Pr {𝐵𝑗|𝐴𝑗}Pr {𝐴𝑗}𝑛

𝑗=1     (1) 

 

because the events A1 ∩ B1, A2 ∩ B2, etc. are all disjoint.  

 

We illustrate Pr{𝑄𝑆} using examples with n = 3 and threshold vector (a1, a2, 0). It 

is easy to see that, conditional on A1, candidate 1’s score, X1, is uniformly distributed on 

(a1, 1). Because all candidates’ scores are independent, it follows that candidate 1’s score, 

X1 = x1, is greater than the score of any other candidate with probability x1
2. It also 

follows that 

 

Pr{𝐵1|𝐴1} =
1

1 − 𝑎1
∫ 𝑥1

2
1

𝑎1

𝑑𝑥1 =
1

1 − 𝑎1

1 − 𝑎1
3

3
 

 

For example, if a1 = 0.8, then the conditional probability that candidate 1 is best, given 

that candidate 1 is chosen, is 0.8133. Of course, candidate 1 is chosen with probability 
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0.2, so the (unconditional) probability that candidate 1 is selected and is best is 0.2 × 

0.8133 = 0.1627.  

 

Now suppose that event A2 occurs. Then the conditional distribution of candidate 

2’s score is uniform on (a2, 1). Moreover, because candidate 1 was not chosen, the 

conditional distribution of candidate 1’s score must be uniform on (0, a1). Assuming that 

a1 ≥ a2, it follows that  

 

Pr{𝐵2|𝐴2} =
1

1 − 𝑎2
[∫

𝑥2
2

𝑎1

𝑎1

𝑎2

𝑑𝑥2 + ∫ 𝑥2

1

𝑎1

𝑑𝑥2]     

 

because, if X2 = x2 where a2 < x2 < a1, the conditional probability that X1 < X2 is x2/a1. 

Hence, the probability that X2 = x2 is the highest score is x2
2/a1. It follows that 

 

 

Pr{𝐵2|𝐴2} =
1

1 − 𝑎2
[
𝑎1

3 − 𝑎2
3

3𝑎1
+

1 − 𝑎1
2

2
 ]      

 

(Note that, if a2 = a1, as in a constant-threshold procedure, the first term on the right side 

disappears.) Using Example 1, where a1 = 0.8, and a2 = 0.6, the conditional probability 

that candidate 2 is best, given that candidate 2 is selected, is 0.7583. Therefore, the 

probability that candidate 2 is selected and is best overall is 0.32 × 0.7583 = 0.2427.  

 

 To find the value of Pr{QS} associated with the Example 1 threshold vector (0.8, 

0.6, 0), all that remains is to calculate the probability that candidate 3 is best given that 

candidate 3 is selected, which occurs with probability 0.48. By the same reasoning as 

earlier, that conditional probability is 

 

Pr{𝐵3|𝐴3} =  
1

𝑎1𝑎2
∫ 𝑥3

2𝑑𝑥3 +
1

𝑎1
∫ 𝑥3𝑑𝑥3 + ∫ 1 𝑑𝑥3

1

𝑎1

𝑎1

𝑎2

𝑎2

0

 

 

because, as usual, if A3 occurs, then it must be the case that X1 < a1 and X2 < a2. It follows 

that  

Pr{𝐵3|𝐴3} =
𝑎2

3

3𝑎1𝑎2
+ 

𝑎1
2 − 𝑎2

2

2𝑎1
+ 1 − 𝑎1 

 

For the threshold vector (a1, a2, 0) = (0.8, 0.6, 0), we have Pr{B3|A3} = 0.525, so the 

unconditional probability that candidate 3 is selected and is best is 0.48 × 0.525 = 0.252. 

It follows that, for Example 1,  

 

𝑄𝑆 = (0.2 × 0.8533) + (0.32 × 0.7583) + (0.48 × 0.525) = 0.6573 

  

In summary, the threshold procedure based on (0.8, 0.6, 0) selects the best candidate with 

probability almost 2/3.  
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 To evaluate QS for a general threshold vector with n candidates, a similar set of 

integrals must be evaluated. Recall that an = 0 and set a0 = 1. Define b1 = 1 and bj = bj-1aj-

1 for j = 2, 3, … n. (Thus, for j > 1, bj = a1 a2 … aj-1.) It can be shown that 

 

Pr{𝐵𝑗|𝐴𝑗} =  
1

1 − 𝑎𝑗
∑ [

1

𝑏𝑗−𝑘+1
∫ 𝑥𝑛−𝑘𝑑𝑥

𝑎𝑗− 𝑘

𝑎𝑗−𝑘+1

] =

𝑗

𝑘=1

1

1 − 𝑎𝑗
∑

𝑎𝑗−𝑘
𝑛−𝑘+1 − 𝑎𝑗−𝑘+1

𝑛−𝑘+1

(𝑛 − 𝑘 + 1)𝑏𝑗−𝑘+1

𝑗

𝑘=1

 

 

As in (1), the sum over j of the values of Pr{Bj | Aj}pj
S equals QS. In particular, for n = 9 

and the optimal threshold vector s, it can be verified that QS = 0.5474.  

 

 We summarize our comparison of our three methods in Table 3. We compare the 

methods for the selection of one of n = 9 candidates on three criteria: 

 

• Probability that the best candidate is selected, Q; 

• Average number of candidates assessed, E[C]; and 

• Expected rank, E[X], or expected score, E(X), of the selected candidate.  

 

 

Criterion Standard 

Method 

Reserve 

Method A 

Reserve 

Method B 

Score Method 

(Optimal 

Thresholds) 

Q 0.4060 0.6976 0.7393 0.5474 

E[C]  6.2786 6.2786 6.6536 4.2384 

E(R) or E(X)  E[R] = 2.9167 E[R] = 1.4583 E[R] = 1.4167 E[X] = 0.8498 

 

Table 3: Comparison of the selection methods on three criteria 

 

To compare the overall quality of the Score Method with the others, note that the 

expected score of the best of 9 candidates is 0.9, and the expected score of the second-

best is 0.8.  Thus, the expected score of a candidate selected by the Score Method is about 

midway between the expected positions of the top candidate and the second-best 

candidate, which in fact is quite close to the expected rank of about 1.5 for a candidate 

selected by one of the Reserve Methods. 

4.  Conclusions 

Finding the best candidate would be easy if the choice could be postponed until all 

candidates have been assessed. Making the reserve candidate the best candidate seen so 

far, and selecting the reserve after all candidates are assessed, guarantees that DM selects 

the best candidate. But this scheme involves luxuries that DM may not be able to afford, 

both in the time needed to see all the candidates and the effort needed to assess their 

qualities.  

What makes the Secretary Problem intriguing, and its standard solution far from 

obvious, are two restrictions that are built into the Standard Method: (1) once a candidate 
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is selected, there is no further consideration of other candidates; and (2) the successful 

candidate’s selection is based only on ordinal information—whether she is better or 

worse than the other candidates who have been assessed so far. We compared the 

Standard Method with other methods that relax either condition (1) or (2) in terms of 

(i) the probability of selecting the best candidate;  

(ii) the average number of candidates assessed by DM before one is selected; 

and 

(iii) the quality of the candidate selected.  

We illustrated our analysis with the example of 9 candidates. Applying the 

Standard Method, DM assesses the first 3 candidates but does not select any of them; 

instead, comparing them and later candidates with each other until one candidate is 

preferable to all the earlier candidates (including the first 3). If this never happens, the 9th 

candidate is selected by default. 

 The two Reserve Methods hold in reserve the best of the first 3 candidates and 

may choose her instead of the 9th candidate. Reserve Method A does so automatically, 

whereas Reserve Method B does so only if she is not preferable to the 9th candidate; if the 

9th candidate is preferable, she is the choice on the last round. Both Reserve Methods 

raise the probability of selecting the best candidate from 41% for the Standard Method to 

71% for Method A and 74% for Method B. Method A does not change the expected 

number of candidates that are assessed (6.3), and Method B increases it slightly (6.7). In 

sum, the Reserve Methods’ big advantage over the Standard Method is to substantially 

increase the probability of selecting the best candidate.    

The Score Method is comparable to the Reserve Methods in the overall quality of 

the selected candidate — our third criterion. The expected score of the selected candidate 

is equivalent to an expected rank of about 1.5 for the ordinal methods, which is to say 

that the candidate selected will tend to be about midway between the best and next-best 

candidates.6 This puts her considerably above the expected rank of 2.9 given by the 

Standard Method. 

The Secretary Problem is clearly relevant to actual hiring decisions made in the 

real world, in which DM must strike a compromise between choosing a reasonably good 

candidate and seeing many before deciding on one who may well be the best overall. In 

fact, DM may well try to keep the best candidate seen so far in reserve, or set a high 

initial threshold that can be gradually lowered as the supply of candidates dwindles. Our 

Reserve and Score Methods show how these factors come into play when the restrictive 

conditions of the original problem are loosened.  

  

 
6 The comparison is approximate, reflecting that the (cardinal) expected score is about midway between the 

expected scores of the ordinally best and next-best candidates.  
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