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Abstract. Consider a decision-maker whose objective is to maximize the
probability of making a correct binary (Yes-No) decision. To gain informa-

tion, the decision-maker can consult independent experts. But how many?

When should consultation stop?
We model the decision-maker’s current state of knowledge using the num-

ber of recommendations for each alternative. After every consultation, the

decision-maker decides whether to make a decision immediately, based on the
advice already received, or to consult again. We impose a ceiling on the num-

ber of consultations and, possibly, a cost for each consultation.

Surprisingly, we find that even when consultation is free, it can be optimal
not to consult. Less surprising, consultation may be uniquely optimal when

evidence is scarce, especially if it is approximately balanced between Yes and
No. For a decision-maker who, initially, is maximally uncertain, we obtain

complete optimal strategies when consultation is free, and we show that there

is a fundamental limit on expected utility ( 3
4

, where the minimum utility is 0

and the maximum is 1), even when consultation is unlimited. We then explore

the strategic effects of a positive cost, linking them to the zero-cost case. We
also compare our results on consultation to strategies in the Secretary Problem,

another decision problem in which information is collected sequentially until a

decision is made.

Individuals facing difficult decisions often ask for advice from family, friends,
or colleagues. New points of view and different expertise can provide useful facts
and relevant perspectives. But consulting is not without costs, including the cost
of delaying the eventual decision. Our concern is whether and when consultation
stops helping. At what point does consulting lose its effectiveness as a strategy?
How much should a decision-maker consult?

The decision to stop consulting can be crucial, whether the decision-maker is a
powerful political leader or a private individual with limited scope for action. For
example, as the Cuban Missile Crisis developed, U.S. President John F. Kennedy
consulted individually with members of EXCOMM, the Executive Committee of the
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National Security Council, before deciding on a response. [A, B, C] Anecdotal ev-
idence suggests that the committee ‘hawks’ dominated the early recommendations,
but Kennedy kept on consulting. A prominent early ‘dove,’ U.N. Ambassador Adlai
Stevenson, was later joined by others; eventually, opposition to escalation prevailed.

We model the decision-maker’s problem, focusing on strategies for deciding
when to stop consulting. We also ask how limitations on the amount of consultation
affect the quality of the (eventual) decision, and how much consultants can help.
Our objective is to provide advice to decision-makers about when to stop consulting
and get on with the decision.

1. Introduction

This paper concerns a decision-maker (DM) who must make a binary (Yes/No)
decision. One of these two alternatives is correct, but DM does not know which
one. DM’s objective is to maximize the probability of making the correct choice.
We do not specify the details, but instead assume that, shortly after the choice is
made, it becomes clear whether or not it was correct. We model DM as receiving
1 unit of utility for a correct choice, and 0 otherwise; we ask whether there is a
consultation strategy that maximizes expected utility.

We assume that DM has beliefs about which choice is correct, which we capture
in DM’s (subjective) probability, p, that Yes is correct. DM will use any advice in
favor of Yes or No to revise appropriately the value of p.

We model consultation as an iterative process in which, at any time, DM can
choose to Stop—make a choice of Yes or No based on the current value of p—or
to Consult, obtaining advice from a new “expert.” After consultation, DM adjusts
the value of p to reflect the advice received, and then chooses whether to Stop or
to Consult again.

A DM who chooses Stop makes a Yes/No decision immediately. It is clear that,
to maximize DM’s expected utility, the best choiceXop depends on the current value
of p; specifically,

Xop =

{
Yes, if p ≥ 1

2

No, if p ≤ 1
2

We propose two restrictions on the amount of consultation:

• DM may Consult a maximum of n times
• DM’s final utility is reduced by c for each consultation

Thus our model contains two parameters: n ≥ 0, an integer representing the ceiling
on the number of consultations; and c ≥ 0, representing the cost (including delay
cost) of each consultation.

Before we describe the details of our model, we compare it to another sequential
decision problem, the Secretary Problem. [D, E, F] Both the Secretary Problem
and the Consultation Problem involve sequences of information; the problem ends
when a decision is made, which may occur at any point in the sequence. In the
Secretary Problem, there is a sequence of job candidates, and the decision-maker
must select one; the only available information about a candidate is their ordinal
ranking relative to previous candidates. The decision to hire a candidate must be
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made before the next candidate is interviewed. Traditionally, success is measured by
the probability that the candidate chosen is, in fact, the overall best candidate. In
the Consultation Problem, the alternatives are fixed but estimates of their utilities
change as evidence is accumulated (utilities are also diminished by the cost of
consultation, if c > 0). The Secretary Problem and the Consultation Problem are
different, but both concern if and when a finite sequence of random events should
trigger a decision.

2. Model

We assume that (1) initially, DM is maximally uncertain, and (2) DM sees each
possible consultant as equally credible. (Possible variations in these assumptions
are discussed in the Conclusions.) We implement our assumptions by modeling
DM’s beliefs about p as DM’s state, (h, k), where h and k are positive integers. In
state (h, k), DM’s probability that Yes is correct is p = h

h+k .

We assume that DM’s initial state is (h, k) = (1, 1), so DM’s initial probability
that Yes is correct is 1

2 . Let h − 1 be the number of Yes recommendations that
DM has received so far, and let k − 1 be the number of No recommendations.
We further assume that, in state (h, k), DM believes that the probability that the
next consultant will recommend Yes is h

h+k , which is identical to DM’s current
probability that Yes is correct. Thus, a consultation implies a state transition

(h, k) −→

{
(h+ 1, k) with probability h

h+k

(h, k + 1) with probability k
h+k

For example, suppose that DM consults 3 times and receives 1 Yes and 2 No’s. Then
after these consultations, DM’s state is (h, k) = (2, 3), DM’s subjective probability
that Yes is correct is 2

5 , which is also DM’s subjective probability that the next
consultant will recommend Yes, in which case the state would transition to (3, 3).

Given a decision to Stop in state (h, k), DM maximizes utility by choosing

Xop =

{
Yes if h ≥ k
No if h ≤ k

Thus, at state (h, k), DM’s immediate expected utility for choosing Stop is

(2.1) u(Xop) = u(h, k) =
max{h, k}
h+ k

.

But in state (h, k), there have been h+k− 2 consultations, so DM’s net utility will
equal u(Xop) − (h + k − 2)c. For instance, in state (h, k) = (2, 3), DM can obtain
expected utility of 3

5 − 3c by choosing No.

DM’s current state (h, k) reflects the recommendations has received. The set
of possible states forms a simple lattice, shown in Figure 1, which also shows the
transition probabilities moving to the right, starting at state (h, k) = (1, 1). Figure
1 also shows DM’s immediate expected utility for choosing Stop at each state (h, k),
as determined by (2.1).
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Figure 1. States, transition probabilities, and immediate utilities

In fact, assuming consultation cost c = 0, our model is a standard Bayesian
decision model in which, progressing through the decision tree, DM’s current proba-
bilities and expected payoffs reflect DM’s experience so far. Thus, DM’s probability
for p is Beta-distributed [G], with probability density function

f(x) =
Γ(h+ k)

Γ(h)Γ(k)
xh−1(1− x)k−1 (0 < x < 1)

(If ` is a positive integer, then Γ(`) = (`− 1)!.) In state (h, k), the expected value
of p is

E[p] =
h

h+ k

so that DM’s current belief about p is equal to the mean of the current distribution
of p.

3. No-Cost Models

We begin by solving all No-Cost Models, in which c = 0 and n = 0, 1, . . .. If
the process arrives at a state (shown below as a node), DM must decide whether
to Stop (S) or Consult (C)—except, of course, that S is the only option if Consult
has already been chosen n times. DM’s expected utility for choosing optimally at
node (h, k) = (1, 1) and, if appropriate, all subsequent nodes, is denoted Uc(n). We
first study U0(n).
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3.1. No-Cost Model: n = 0. If no consultations are allowed, DM must Stop
at (h, k) = (1, 1). There are no decisions to make, and by (2.1) DM’s expected
utility is U0(0) = 1

2 .

3.2. No-Cost Model: n = 1. If exactly one consultation is allowed, DM may
stop at (h, k) = (1, 1), which would produce expected utility U0(0) = 1

2 , or consult
once, ending up at either (2, 1) or (1, 2). Using (2.1), DM’s decision problem is as
shown in Figure 2, where nodes labelled ‘0’ are random (i.e., choices by Nature)
and thicker (darker) branches indicate choices consistent with backward induction
from the endpoints.

C

0

S S

S

(1, 1)

(1, 2)

(2, 1)
1/2

(1/2)

(1/2)

2/3

2/3

Figure 2. Decision Problem, c = 0, n = 1

It is easy to see that DM’s optimal choice at (1, 1) is C, and DM’s expected utility
for choosing optimally throughout is U0(1) = 2

3 .

3.3. No-Cost Model: n = 2. If exactly two consultations are allowed, DM
has a decision to make at (h, k) = (1, 1); if that decision is Consult, then there is
another decision at (2, 1) or (1, 2). Using (2.1), DM’s decision problem is as shown
in Figure 3. Note that the figure is not a conventional decision tree, as the node at
(2, 2) has indegree 2. But it is easy to see that this simplification does not change
the analysis.
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Figure 3. Decision Problem, c = 0, n = 2

Again, the darker branches in Figure 3 indicate rational choices. It is clear that at
(1, 1) DM’s optimal choice is C, and at (2, 1) and (1, 2) it is C or S. DM’s expected
utility starting at (1, 1) is U0(2) = 2

3 .
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3.4. No-Cost Model: n = 3. By a similar analysis, it can be shown that, if
c = 0 and n = 3, DM’s optimal choice at (1, 1), (2, 1), (1, 2) and (2, 2) is C, whereas
at (3, 1) and (1, 3) it is either C or S. The expected utility of the optimal strategy
U0(3) = 7

10 .

3.5. No-Cost Model: General Analysis. Assuming that the current state
is (h, k), we compare two options, (S) Stop Immediately versus (CS) Consult and
then Stop Immediately. First note that, at state (h, k), there have already been
h+ k − 2 consultations, so CS is infeasible unless n > h+ k − 2.

Lemma 3.1. Assume c = 0 and n > h + k − 2. If h 6= k, then at (h, k) DM’s
expected utilities for option S and option CS are equal.

Proof. Assume h > k. At (h, k), S yields expected utility h
h+k . Option C

produces state (h+ 1, k) with probability h
h+k and state (h, k+ 1) with probability

k
h+k . Using (2.1), CS yields expected utility

h

h+ k
· h+ 1

h+ k + 1
+

k

h+ k
· h

h+ k + 1
=

h2 + h+ hk

(h+ k)(h+ k + 1)
=

h

h+ k
.

The proof is analogous if h < k. �

The message of Lemma 3.1 is that it is never an advantage to Consult if you plan
to Stop immediately after consulting. Crucial to this result is that the state, (h, k)
is not located on the centre-line of Figure 1—in other words, that h 6= k.

Along the centre-line of Figure 1, the situation is different, as shown by the
next lemma.

Lemma 3.2. Assume c = 0 and n > 2h − 2. At state (h, h), option CS yields
greater expected utility than option S.

Proof. At (h, h), S yields expected utility 1
2 by (2.1), while option C produces

state (h + 1, h) with probability 1
2 and state (h, h + 1) with probability 1

2 . Again
using (2.1), CS at (h, h) yields expected utility

1

2
· h+ 1

2h+ 1
+

1

2
· h+ 1

2h+ 1
=

h+ 1

2h+ 1
>

1

2
.

�

Lemma 3.2 provides an important contrast with Lemma 3.1. If it happens that
h = k, then choosing CS, Consult and then Stop, is an improvement on choosing
S, Stop immediately.

Lemma 3.3. Assume c = 0 and n > h + k − 2. If either S does not maximize
DM’s expected utility at (h+ 1, k) or S does not DM’s maximize expected utility at
(h, k + 1), then only C maximizes DM’s expected utility at (h, k).

Proof. If h = k, Lemma 3.2 shows that Stop at (h, k) cannot maximize ex-
pected utility. If h 6= k, Lemma 3.1 shows that S and CS produce equal expected
utility. Suppose that, at (h+ 1, k), DM has a choice that begins with C and max-
imizes expected utility. Then at (h, k) the choice of C must maximize expected
utility. The argument is similar if there is a utility-maximizing choice beginning
with C at (h, k + 1). �
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The contribution of Lemma 3.3 is to link the CS versus S comparison to backward
induction. If either S is not an optimal choice at (h + 1, k) or S is not an optimal
choice at (h, k + 1), then C is uniquely optimal at (h, k). But, for example, if
n = h + k − 1, then S is mandatory at (h + 1, k) or (h, k + 1) since no more
consultations are allowed, so both S and C are optimal choices at (h, k).

To study backward induction, it is convenient to separate cases according to
the parity of n.

Theorem 3.4. If c = 0 and n = 2m − 2 consultations are permitted, where
m ≥ 1, DM’s unique optimal choice is C at any state (h, k) satisfying max{h, k} ≤
m− 1. At every other state, both C and S are optimal.

Proof. If C is always chosen, then the final state (h, k) satisfies h+ k = 2m.
At state (m,m), C is not permitted, so the expected utility is 1

2 . By Lemma 3.2, if
1 ≤ t < m, DM’s utility is increased by choosing C at state (t, t). By Lemma 3.3,
the expected utility increases by choosing C at any state (t−1, t), where 2 ≤ t < m.
By induction, the expected utility increases by choosing C at any state (r, s), where
1 ≤ s < r < m or 1 ≤ r < s < m. It is easy to see that such states (h, k) are
exactly those that satisfy max{h, k} ≤ m−1. At all other states, both C and S are
optimal, by Lemma 3.1. �

Note that DM is indifferent between S and C exactly when max{h, k} ≥ m.

Figure 4 shows DM’s optimal strategy and expected utilities when n = 4. Since
m = 3, Theorem 3.4 shows that the optimal choice is to consult at all states (h, k)
where max{h, k} ≤ 2, that is, at (1, 1), (1, 2), (2, 1), and (2, 2). At all other states
either C or S may be chosen. Each state is labelled with DM’s expected utility at
that state should it be attained when the optimal strategy is played. Notice that
whether Consult is uniquely optimal depends on both the balance of evidence and
the amount of evidence; the evidence favours Yes at (2, 1) and the unique optimal
choice is Consult, whereas at (3, 2) the evidence still favours Yes, but now DM is
indifferent between Consult and Stop.

Theorem 3.5. If c = 0 and n = 2m − 1 consultations allowed, where m ≥ 1,
DM’s optimal strategy is C at any state (h, k) such that max{h, k} ≤ m. At every
other state, both C and S are optimal.

Proof. If C is always chosen, then the final state (h, k) must satisfy h+ k =
2m+ 1. At state (m,m), one more consultation is permitted. By Lemma 3.2, DM
strictly prefers C at state (m,m), and at any state (t, t) where 1 ≤ t ≤ m. By
Lemma 3.3, the expected utility increases by choosing C at any state (t − 1, t),
where 2 ≤ t ≤ m. By induction, expected utility increases by choosing Consult at
any state (r, s), where 1 ≤ s < r ≤ m or 1 ≤ r < s ≤ m. At all other states, both
C and S are optimal, by Lemma 3.1. �

Now it is the case that DM is indifferent between S and C exactly when max{h, k} >
m. Figure 5 shows DM’s optimal strategy and expected utilities when n = 4. Since
m = 3, Theorem 3.5 shows that the optimal choice is to consult at all states (h, k)
where max{h, k} ≤ 3, that is, at (1, 1), (1, 2), (2, 1), (3, 1), (2, 2), and (1, 3). At
all other states either C or S may be chosen.
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Figure 4. Optimal strategies and expected utilities when n = 4
and c = 0

To state the optimal strategy formally, define the set of Consultation Nodes to
be

C(n) =

{
(h, k) : h ≥ 1, k ≥ 1,max{h, k} =

⌊
n+ 1

2

⌋}
For example, (h, k) = (3, 2) ∈ C(5), because max{h, k} = 3 = 5+1

2 , but (h, k) =
(4, 2) 6∈ C(5).

If c = 0 and the maximum number of consultations is n, a strategy is optimal
if and only if it specifies C at all nodes of C(n). At all other nodes, either C or S
may be chosen. Notice that, if n is odd, then C(n) = C(n+ 1).

When n consultations are permitted and the cost per consultation is c, denote
DM’s expected utility using the optimal strategy by U∗c (n). We can now specify
U∗0 (n).

Theorem 3.6.

U∗0 (n) =

{
3n+2
4n+4 if n even
3n+5
4n+8 if n odd

Proof. The strategy to always Consult is optimal. By induction, after n
consultations, each possible state (n + 1, 1), (n, 2), . . . , (1, n + 1) has probability
1

n+1 . Suppose that n > 0 is even, and set n = 2m− 2 so m ≥ 1. All possible final

states, (j, 2m − j) where j = 1, 2, . . . , 2m − 1, have probability 1
2m−1 . It follows
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Figure 5. Optimal strategies and expected utilities when n = 5
and c = 0

that

U∗0 (n) =
1

2m− 1

2m−1∑
j=1

max{j, 2m− j}
2m

=
3m− 2

4m− 2
.

Substitution of m = n+2
2 now shows that U∗0 (n) = 3n+2

4n+4 as required. Similarly, if n
is odd, set n = 2m− 1 with m ≥ 1. Then a similar calculation shows that

U∗o (n) =
1

2m

2m∑
j=1

max{j, 2m+ 1− j}
2m

=
3m+ 1

4m+ 2

and substitution for m = n+1
2 now produces U∗0 (n) = 3n+5

4n+8 . �

Note that, if n is odd, so that U∗0 (n) = 3n+5
4n+8 , then n+1 is even, and U∗0 (n+1) =

3(n+1)+2
4(n+1)+4 = 3n+5

4n+8 = U∗0 (n). Thus we have that, for example, U∗0 (0) < U∗0 (1) =

U∗0 (2) < U∗0 (3) = U∗0 (4) < U∗0 (5) . . ..

It is immediate from Theorem 3.6 that

U∗0 (n) −→ 3

4
as n −→∞

For some intuition into this limit, recall that after n consultations, each possible
state (n+ 1, 1), (n, 2), . . . , (1, n+ 1) has equal probability. In the limit, h

h+k can be

thought of as a uniform random variable Y on [0, 1]; the limiting value of max{h,k}
h+k
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is M(X) = max{Y, 1− Y }. It is easy to check that the expected value of M(Y ) is
3
4 , confirming the limiting value obtained above.

As U∗0 (n) is non-decreasing, it follows that, as more consultations are permitted,
the expected utility (following the optimal strategy) increases toward an upper
bound of 3

4 . No amount of consultation can possibly increase expected utility
beyond this bound, making it a fundamental limit on the value of consultation in
our model.

4. Cost Models

Now we turn to Cost Models, in which c > 0 and n = 0, 1, . . .. Expected
utility is denoted Uc(n); if an optimal strategy is followed, DM’s expected utility is
denoted U∗c (n).

4.1. Cost Model: n = 0. If no consultations are permitted, there are no
decisions, and expected utility is U∗c (0) = 1

2 .

4.2. Cost Model: n = 1. If 1 consultation is permitted, the only choice is C
or S at (1, 1). DM’s expected utility then equals{

1
2 , if S
2
3 − c, if C

It is clear that the optimal strategy is C if c ≤ 1
6 and S if c ≥ 1

6 , so that

U∗c (1) =

{
2
3 − c, if c ≤ 1

6
1
2 , if c ≥ 1

6

Thus, if c > 0 is small enough, the optimal strategy is C, exactly the same as at
c = 0, but if c is large enough, the optimal strategy changes from C to S. Note also
that U∗c (1) is a continuous function of c.

We now compare the choices S and CS at a typical node (h, k).

Lemma 4.1. Assume c > 0 and n > h+ k− 2. If h 6= k then, at (h, k), S gives
greater expected utility than CS.

Proof. At (h, k) there have been h+k− 2 consultations, so S yields expected
utility h

h+k − (h+ k − 2)c, whereas CS yields expected utility

h

h+ k

(
h+ 1

h+ k + 1
− (h+ k − 1)c

)
+

k

h+ k

(
h

h+ k + 1
− (h+ k − 1)c

)
which is easily shown to equal h

h+k − (h+k−1)c. The utility of S therefore exceeds
the utility of CS by c > 0. The proof is analogous if h < k. �

Lemma 4.2. Assume n > 2h − 4. At state (h, h), CS yields greater expected
utility than S if and only if c < 1

2(2h+1) .

Proof. The expected utility for S is 1
2 − (2h − 2)c, and the expected utility

for CS is h+1
2h+1 − (2h− 1)c. It is easily shown that expected utility for CS is greater

iff the specified condition is satisfied. �



WHEN TO STOP CONSULTING 11

Thus, C is better at (h, h) provided c is small enough. In particular, our analysis
of the h = 1, n = 1 case is confirmed, and it also applies to n = 2. Note that if it is
optimal to choose C when c > 0, then it must be optimal to choose C when c = 0.
Therefore, the nodes where it is optimal to choose C are always a subset of C(n).

Starting at a state (h, k) where h 6= k, let G be the conditional strategy of
continuing to choose C until the state returns to the centre line, and then choosing
C once more. (If h > k, proceeding directly to the centre line will produce the state
(h, h); strategy G calls for one more choice of C when this state is attained.)

Lemma 4.3. Assume c > 0 and n > 2h−2. At state (h, h−1), G yields greater
expected utility than S if and only if c < h−1

2(2h+1)(3h−2) .

Proof. At state (h, k), the expected utility for S is

h

2h− 1
− (2h− 3)c

The expected utility for G is

h

2h− 1

(
h+ 1

2h
− (2h− 2)c

)
+

h− 1

2h+ 1

(
h+ 1

2h+ 1
− (2h− 1)c

)
which can be shown to equal

4h− 1

2h− 1

(
h+ 1

2(2h+ 1)
− (h− 1)c

)
.

After some manipulation, it can be seen that the expected utility for G is greater
than for S iff

c <
h− 1

2(2h+ 1)(3h− 2)

�

It follows from Lemmas 4.2 and 4.3 that the optimal strategy when n = 3 is
given by

• At (1, 1), choose C if c ≤ 1
6 and S otherwise

• At (2, 1) and (1, 2), choose C if c ≤ 1
40 and S otherwise

• At (2, 2), choose C
• At all other nodes, choose S

The resulting utility is given by

U∗c (3) =


7
10 − 3c, if c ≤ 1

40
2
3 − c, if 1

40 ≤ c ≤
1
6

1
2 , if 1

6 ≤ c

Moreover, the same strategy is optimal when n = 4, and U∗c (4) = U∗c (3). Again,
note that U∗c (3) is a continuous function of c for c ≥ 0.

This optimal strategy is consistent with the optimal choices shown (for n = 3)
in Figure 6. Note that these choices are “subgame perfect” in the sense that they
prescribe the optimal choice on arriving at each node. Should DM arrive at node
(2, 2), the optimal choice is to consult as long as c < 1

10 . However, DM can reach
(2, 2) only by consulting at (2, 1) or (1, 2), and at these two nodes the optimal
choice is Consult only if c < 1

40 . Thus, if the optimal strategy (starting at (1, 1)) is
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followed, testing whether c < 1
10 at (2, 2) is irrelevant; this node cannot be attained

unless c < 1
40 . But if, perhaps as a result of error, (2, 2) is reached even though

c > 1
40 , the optimal choice is Consult if c < 1

10 and Stop if c > 1
10 .

1, 2

1, 3

1, 4

2, 3

3, 1

4, 1

2, 2

3, 2

1, 1

1/6

t

1/40

1/10

1/40

= Consult if < ; Stop if >c t c t

= Stop

2, 1

Figure 6. Optimal strategies and expected utilities when n = 3
and c ≥ 0

When n = 5 and c ≥ 0, a similar calculation yields Figure 7. In view of Figure
5, we anticipate that when c −→ 0, U∗c (5) −→ 5

7 . This is the case, but the strategy

to Consult at every node of C(5) is implemented only if c < 1
189 .

5. Conclusions

Our model suggests some general rules of thumb for decision-makers who may
consult to gain evidence to support a decision.

• Consult when there is relatively little evidence, or when the evidence is
approximately balanced

• Consult less as consultation becomes costlier, particularly when the evi-
dence is less balanced

The deliberations over the U.S. response to the Soviet missiles in Cuba demon-
strate that continued consultation can be important, and the choice to keep consult-
ing or to act can be crucial. At the outset of the Cuban missile crisis, EXCOMM
had 13 members, mostly cabinet secretaries, but it then expanded to include 13
so-called advisers, who were brought in to offer counsel on various matters. (Be-
cause these advisors came and went, they do not follow strictly our model that
allows consultants only to be added.) The consensus that the committee reached
was that if a blockade of Cuba failed to induce Soviet withdrawal of the missiles, it
could be followed by more aggressive action—specifically, an air strike—to try to
eliminate the threat that the missiles posed, but at the possible cost of provoking
a nuclear war. After the United States secretly agreed to withdraw its comparable
missiles from Turkey if the Soviet Union withdrew its missiles from Cuba, the crisis
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1, 2

2, 1

1, 3

1, 4

1, 5

2, 4

2, 3

3, 3

3, 1

4, 1

5, 1

6, 1

5, 2

4, 3

3, 4

2, 5

1, 6

2, 2

3, 2

4, 2

1, 1

t

1/6

1/49

1/14

1/49

1/49

1/49

1/189

1/189

1/49

= Consult if < ; Stop if >c t c t

= Stop

Figure 7. Optimal strategies and expected utilities when n = 5
and c ≥ 0

subsided, illustrating how consultations, which occurred over 13 harrowing days,
may lead to a propitious solution to a crisis.

One important conclusion from our model is that there is a fundamental upper
limit on the utility of a decision-maker who is initially maximally uncertain (i.e.,
who begins at (h, k) = (1, 1)), no matter how much consultation is undertaken.
This limit applies even if consultation is free (c = 0).

By being specific, our model makes these observations explicit. For example,
when consultation is costless (c = 0) and n consultations are permitted, the rule
of thumb indicates that a DM who begins at (h, k) = (1, 1) should consult at any
state (h, k) where

1 ≤ h, k ≤ n+ 1

2

To determine whether to consult at a state (h, k), a simple test is whether
strategy G is feasible; if h > k say, the question is whether, if there were an
unbroken sequence of No’s resulting in the state (h, h), would one more consultation
be permitted? If the answer to this question is positive, then G is feasible, and—if
c is low enough—the decision-maker should consult at (h, k).

Simply guessing initially gives a maximally uncertain decision-maker an ex-
pected utility of 1

2 . Consultation can raise this expected utility, but even with

unlimited costless consultation it cannot exceed the fundamental limit of 3
4 . Con-

sultation can increase expected utility if costs are zero, but it does so at a decreasing
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rate. Even following an optimal strategy, the upper bound on the expected util-
ity approaches 3

4 , so perfection—always making the right decision—is unattainable
through consultation because of the inherent uncertainties in the model.

We conclude with some comments on possible variations in our model, which we
leave for a future project. First, a decision-maker who is not maximally uncertain
may start at initial state (h0, k0) for any h0 > 0 and k0 > 0. Moreover, consultation
may cause a state transition

(h, k) −→

{
(h+ α, k) with probability h

h+k

(h, k + α) with probability k
h+k

for some fixed α > 0. To add more complexity, consultant ` may have cost c` and
transition the state by an amount α`. But distinguishing consultants in this way
may raise another decision problem, namely how DM should choose a consultant
to get the most information, α`, at the least cost, c`.

We have assumed additive costs; another variation on our model could be
multiplicative costs, so the net utility of Stop at (h, k) would be u(Xop)·(1+γ)h+k−2

where γ > 0 is a new parameter. A hybrid model comprising both additive and
multiplicative costs is also possible. We do not explore these variant of our model,
but we conjecture that they have similar properties to the additive model.
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