PHYS-UA 170 Spring, 2020

General Relativity

Instructor: Andrew MacFadyen, am193@nyu.edu, room 1036, 726 Broadway

Class: Tuesdays & Thursdays 9:30-10:45, room 802, 726 Broadway

Office Hours: TBD

Grading: Problem Sets 50%, Midterm Exam 20%, Final Exam 30%

Text book and supplemental reading:

"Gravity; An Introduction to Einstein's General Relativity" by James B. Hartle (Addison Wesley, 2009) (main text)

"A First Course in General Relativity," 2nd edition by B. Schutz (Cambridge University Press, 2009) (recommended text, available online via ebrary)

"Spacetime And Geometry: An Introduction To General Relativity" by Sean Carroll (Pearson, 2003) (recommended advanced text)

"Gravitation," by Misner, Thorne and Wheeler (Princeton University Press) (classic comprehensive text)

"Einstein Gravity in a Nutshell" by A. Zee (Princeton University Press, 2013)

"Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity" by Steven Weinberg (Wiley, 1972) (advanced text)

Black Holes and Time Warps; Einstein's Outrageous Legacy, K. Thorne (Norton, 1994) (excellent popular book)

Course Outline (subject to change):

Special Relativity (2 weeks)

- Inertial Frames, Principle of Relativity, Lorentz Transformations
- Spacetime, Coordinates and Invariance
- Relativistic Kinematics and Dynamics
- Variational Principle for Free Particle Motion, Light Rays

Gravity as Geometry (2 weeks)

- Equivalence principle, Tests of Equality of Inertial and Gravitational Mass
- Clocks in a Gravitational Field, Applications to the GPS
- Local Inertial Frames, Light Cones, World Lines, Vectors
- Geodesics, Symmetries and Conservation Laws

Black Holes (3 weeks)

- Schwarzschild Geometry, Gravitational Redshift
- Particle Orbits: Precession of the Perihelion of Mercury
- Light Ray Orbits: Deflection and time Delay of Light (Gravitational Lensing)
- Solar System Tests of General Relativity
- Gravitational Collapse to a Black Hole
- Astrophysical Back Holes (X-ray binaries, Galaxies, Hawking Radiation)

Gravitational Waves (2 weeks)

- Linearized Gravitational Waves, Energy, Polarization
- Detecting Gravitational Waves, Interferometers

Cosmology (1 week)

- Homogeneous and Isotropic Spacetimes: Expansion of the Universe, Cosmological Redshift
- Matter, Radiation, Vacuum Energies: Evolution of FRW Models

Einstein Equations (3 weeks)

- Tensors, Covariant Derivatives
- Tidal Gravitational Forces, Riemann Curvature
- Energy Momentum Conservation
- Einstein Field Equations, Newtonian Limit

- Applications: Production of Weak Gravitational Waves, Quadrupole Formula, Gravitational Radiation from Binary Pulsars