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It is “the received wisdom” that any intuitively natural and consistent res-
olution of a class of semantic paradoxes immediately leads to other paradoxes
just as bad as the first. This is often called the “revenge problem”. Some pro-
ponents of the received wisdom draw the conclusion that there is no hope of
any natural treatment that puts all the paradoxes to rest: we must either live
with the existence of paradoxes that we are unable to treat, or adopt artificial
and ad hoc means to avoid them. Others (“dialetheists”) argue that we can
put the paradoxes to rest, but only by licensing the acceptance of some contra-
dictions (presumably in a paraconsistent logic that prevents the contradictions
from spreading everywhere).!

I think the received wisdom is incorrect. In my effort to rebut it, I will focus
on a certain type of solution to the paradoxes. This type of solution has the
advantage of keeping the full Tarski truth schema
(T) True({(A) < A
(and more generally, a full satisfaction schema). This has a price, namely that
we must restrict both the law of excluded middle and the law connecting A — B
with = AV B, but we can carve the restrictions narrowly enough so that ordinary
reasoning (e.g. in mathematics and physics) is unaffected.? T'll call solutions of
this type G-solutions. (If you want to think of the ‘G’ as standing for ‘good’
I won’t stop you.) The literature contains several demonstratively consistent
solutions of this sort; for purposes of this paper there is no need to choose
between them. (I will give an informal introduction to this type of solution
in sections 1, 3 and 4, and a formal account in section 5.) It will turn out
that any such solution generates certain never-ending hierarchies of sentences
that may seem “increasingly paradoxical” (roughly speaking, it is harder to
find a theory that satisfactorily treats later members of the hierarchy than to
find one that satisfactorily treats earlier members); but the G-solution gives
a consistent treatment of each member of each such hierarchy. The existence

1 This latter view is only reasonable if “revenge” is less of a worry for inconsistent solutions
to the paradoxes than for consistent ones. I think myself that advocates of inconsistent
solutions face a prima facie revenge problem, and doubt that they can escape it without
employing the devices I suggest in this paper on behalf of certain consistent solutions. But
that is a matter for another occasion.

2 Also, the law for the conditional will hold whenever excluded middle holds for its an-
tecedent and consequent.



of these hierarchies prevents certain kinds of revenge problems from arising:
certain attempts to state revenge problems simply involve going up a level in a
hierarchy all levels of which have been given a non-paradoxical treatment.

Still, there are certain “vindictive strategies” (strategies for trying to “get
revenge” against solutions to the paradoxes) that G-solutions may seem to be
subject to. I'll argue that the most popular such strategy is based on a misun-
derstanding of the significance of model-theoretic semantics. But there is a far
more interesting strategy for which this is not so. As mentioned, a G-solution
generates certain never-ending hierarchies of apparently paradoxical sentences
which however are each successfully treated by the account. But shouldn’t it
be possible to “break out of the hierarchies” to get paradoxes that are not re-
solved by the account? Or to put it another way: If we can’t “break out of the
hierarchies” within the language that our solution to the paradozes treats, isn’t
that simply due to an expressive limitation in that language? That, I think, is
the most difficult revenge worry for G-solutions to deal with.

Some of the worries about “breaking out of the hierarchies” turn out to
be intimately connected to “the paradox of the least undefinable ordinal”, a
paradox in the same ballpark as those of Berry and Richard. The G-solutions
provide a consistent treatment of that apparent paradox. That treatment will
be an important element in my argument that we are unable to “break outside
the hierarchies”, but that this does not reflect an expressive limitation of the
language.

Part One: Introductory Discussion

1. The Paradoxes and Excluded Middle. Imagine that we speak a
first order language L: it has the usual connectives and quantifiers, and it
contains no ambiguous terms and no indexicals. It is to be a very rich language,
powerful enough to express all our mathematics, including the richest set theory
we currently know how to develop. It should be able to talk about its own
expressions and their syntax; though we needn’t actually make this a separate
requirement, since as Goédel showed we can use arithmetical surrogates. If we like
we can also assume that L can express all our current claims about the physical
world too, though this will not really matter to the problem to be discussed.
Finally, L should contain terms like ‘true’ and ‘true of’. For present purposes
we needn’t worry about how such terms apply to sentences and formulas in
languages other than our own, so we may as well assume that they have been
restricted to apply only to the sentences and formulas of L.

These assumptions about our language L are enough to generate paradoxes
(or rather, apparent paradoxes). Some of them, like the Liar paradox, arise
from the fact that by any of a number of well-known routes we can construct
self-referential sentences: sentences that attribute to themselves any property
you like. For instance, the Liar paradox arises from any sentence that directly



or indirectly asserts its own untruth; let @ be some such sentence, and (Q) its
standard name.? Since @ asserts its own untruth, it certainly seems that

Q = “True((Q))
had better be part of our overall theory. In addition, it seems that our theory
of truth ought to include every “Tarski biconditional”, i.e. every instance of the
schema (T) mentioned earlier; hence in particular,

True((Q)) < Q-

But then if the conditional, and the biconditional defined from it in the obvious
way, are at all reasonable, we can infer

(*) True((Q)) < ~True((Q))-

And being of form B < =B, this leads to contradiction in classical logic.

There are similar paradoxes that don’t require the construction of self-
referential sentences. For instance, just as our theory of truth ought to include
the instances of Schema (T), so our theory of satisfaction ought to include the
instances of the following schema:

(S)  For all z, z satisfies (A(v)) if and only if A(z).
(where to say that x satisfies (A(v)) is the same as saying that (A(v)) is true

of x).* In the special case where A(v) is the formula ‘v does not satisfy v’, this
yields that for all x,

(v does not satisfy v) satisfies x if and only if = does not satisfy z,

and hence
(%) (v does not satisfy v) satisfies itself if and only if it does not satisfy
itself.?

Again, (**) is of form B « —B and hence leads to contradiction in classical
logic.

3There is a familiar distinction between contingent and non-contingent Liar sentences. If
the sentence "Nothing written on the first blackboard manufactured in 2005 is true" is written
on a blackboard that (perhaps unbeknownst to the writer) was the first to be manufactured
in 2005, it is a contingent Liar: given the contingent facts about blackboard-manufacture
it in effect asserts its own untruth. Non-contingent Liar sentences assert their own truth
independent of such empirical facts. The present discussion applies to Liar sentences of both
kinds.

4(S) should really be called (S1): it is the schema for the satisfaction predicate ‘satisfiess’
that applies to formulas with exactly one free variable, and there is an analogous schema (Sy,)
for each satisfaction predicate ‘satisfies,,” that applies to formulas with exactly n free variables.
But (S1) can be taken as basic: in any language rich enough to code finite sequences we can
artificially define the higher satisfaction predicates in terms of 1-place satisfaction, in a way
that guarantees the schemas for the former if we have (S1): e.g. to say that ‘v is larger than
vo’ is satisfied by o1 and o2 in that order is in effect to say that ‘u is an ordered pair whose
first member is larger than its second’ is satisfied by (o1, 02).

We can similarly reduce truth to satisfaction: to say that ‘Snow is white’ is true is in effect
to say that ‘Snow is white and u = v’ is satisfied by everything (or equivalently, by something).
(T) then falls out of (S1), so (S1) can be taken as the sole basic schema. But it’s more natural
to talk in terms of truth than satisfaction, so I’ll keep on talking about (T).

5 A natural abbreviation for ‘v satisfies itself’ would be ‘v is onanistic’. But for some reason
‘v is homological’ has caught on instead, with ‘heterological’ for ‘non-onanistic’.



The “G-solutions” that I'll be considering accept these derivations of (*) and
(**). But unlike “dialetheic” views (e.g. [15]), they do not accept contradictions
(sentences of form C' A —C). So they must reject all arguments that would take
us (for arbitrary B) from B <> =B to a sentence of form C' A =C.

I think that the most revealing way of trying to argue from B < =B to a
contradiction is as follows:

(i) Assume both B <« =B and B. Then by modus ponens, =B; so B A —B.
(ii) Assume both B < =B and —B. Then by modus ponens, B; so B A —B.

(iii) Since B A-B follows both from the assumptions B < —B and B and from
the assumptions B <+ =B and —B, then it follows from the assumptions
B < =B and BV —B. (Reasoning by cases.)

(iv) But BV =B is a logical truth, so B A =B follows from B < —B alone.

I now further stipulate that G-solutions accept both modus ponens and reason-
ing by cases (aka disjunction elimination). So they take the reasoning to be
valid through step (iii).

What G-solutions question is the use of the law of excluded middle in step
(iv). Unlike intuitionists, though, G-theorists take excluded middle to be per-
fectly acceptable within standard mathematics, physics, and so forth; it is only
certain reasoning using truth and related concepts that are affected.® There
is a verbal issue here about exactly how this point should be put. One way
to put it is to say that excluded middle is literally valid in some contexts like
mathematics, but invalid outside that domain. But it might be thought that
the “topic neutrality” of logic implies that if excluded middle can’t be accepted
everywhere then it can’t be taken as literally valid anywhere. Even so, this
doesn’t undermine the claim that it is effectively valid” in contexts like math-
ematics: if one accepts all instances of the schema AV —A that don’t contain
‘true’, then even if one doesn’t claim that they are logical truths one can reason
from them just as a classical logician reasons in mathematics and physics. So it
really makes no difference in which of the two ways we talk.

Another argument from B « =B to a contradiction runs as follows: after
step (i) as above, we conclude that B < —B entails B by a reductio rule (that

6 Actually advocates of G-solutions might want to further restrict excluded middle, e.g. by
disallowing its application to certain sentences containing vague concepts; and indeed it is
not out of the question to regard certain mathematical concepts such as ‘ordinal’ as having a
kind of “indefinite extensibility” that is akin to vagueness. Still, for purposes of this paper I
assume that excluded middle applies unrestrictedly within standard mathematics.

Another plausible restriction of excluded middle is to sentences containing normative con-
cepts like ‘appropriate’ or ‘reasonable’; this is relevant to certain “doxastic paradoxes” in-
volving, for instance, sentences asserting that it is not appropriate to believe them. But such
paradoxes are outside the scope of this paper.

T“Effectively valid’ means ‘in effect valid’: it has nothing to do with effective procedures.
Similarly I’ll use ‘effectively classical’ to mean ‘in effect classical’, i.e. excluded middle holds
even if not as a logical law.



if X and B together entail ~B, then X alone entails —B); that result and (ii)
then give the contradiction. But the most obvious argument for that reductio
rule is based on the law of excluded middle (together with reasoning by cases):
the argument is that if X and B together entail =B, then since X and —B
certainly entail =B it follows that X and BV —B entails = B; and since BV —B
is a logical truth, this means that X entails =B. So I will assume that in giving
up (or restricting) excluded middle we give up (or restrict) this reductio rule as
well.

Admittedly, this reductio rule is valid in intuitionist logic even in absence of
excluded middle, so I can’t say that we are compelled to give up the reductio
rule if we give up excluded middle. But intuitionist logic does not evade the
paradoxes, so we had best not follow its lead.® My point is that there is a
natural response to the Liar paradox which sees this kind of reductio reasoning
as depending on the law of excluded middle and both as needing restriction;
and that is the response that G-solutions adopt.

2. Trying to Preserve Classical Logic. Weakening classical logic to deal
with the paradoxes is obviously not something to be done lightly, and there are
questions about how to understand the proposal, some of which I will address
in the next section. But first Id like to briefly survey the options for handling
the paradoxes within classical logic; one reason for doing this is to make the
non-classical approach look more attractive, and another is to facilitate a later
discussion of the “hierarchies of paradoxical sentences” that arise within G-
solutions.

In classical logic, the reasoning of the Liar paradox can easily be turned into
a proof of the following disjunction:

Either
(i) (Q) is true, but —=Q
or
(ii) (@) is not true, but Q.

At this point, classical theorists have three options. (Of course, there is also
the possibility of remaining agnostic between the options, but that is of no
particular interest.)

The first option is to choose disjunct (i). This would seem quite unattractive:
doesn’t calling (@) true while saying “nonetheless, =Q” deprive the notion of
truth of significance?

8Intuitionists tend to motivate the reductio rule by way of the law —(A A =A) (sometimes
misleadingly called the “law of non-contradiction”). But to anyone who accepts the deMorgan
law =(A A B) = —~A V =B, this version of the “law of non-contradiction” simply amounts to
—AV——A, aslightly restricted version of excluded middle that few who reject excluded middle
would accept. (That’s why dialetheists who accept excluded middle accept =(AA—A), making
clear that it does not adequately capture the principle that we should reject contradictions.)
The intuitionist argument for reductio thus turns on their rejection of the deMorgan law.



The second option is to choose disjunct (ii). This seems on its face almost
equally unattractive: if one holds that (@) is not true, what is one doing holding

Q7

The third option is to accept the disjunction of (i) and (ii) while ruling out
as absurd the acceptance of either disjunct. (It is because the acceptance of
either disjunct is viewed as absurd that this is really a third option, distinct
from agnosticism between the first two options). This third option takes the
acceptance of either (i) or (ii) to be absurd, on the ground that commitment
to A requires commitment to A being true and conversely; but it nonetheless
allows commitment to A V =A. Now, many people think that if one accepts
a disjunction of two options each of which would be absurd to accept, one
has already accepted an absurdity. Indeed, that principle appears to be built
into classical logic: it is the principle of reasoning by cases (or disjunction
elimination), to which attention was called above. This third option is based
on rejecting that principle, except in restricted form.? So it is probably best
thought of as only a semi-classical option: it does accept all the validities of
classical logic, but disallows natural applications of disjunction elimination and
some of the other standard meta-rules.

These three options seem to be the only possibilities for keeping the validities
of classical logic without accepting contradictions.!® Admittedly, one could
insist with Tarski that the predicate ‘true’ should be given a hidden subscript,

9The restricted form is that if T together with A entail C' by classical rules, and T together
with B entail C by classical rules, then T’ together with A V B entail C. The third option
can accept that, but cannot accept the generalization to "entailment" by the truth rules (that
commitment to A requires commitment to True({A)) and conversely). And these truth rules
must have a quasi-logical status on the third option, since it was only by holding acceptance
of (i) and of (ii) to be absurd that the view differentiated itself from agnosticism between the
first two options.

10T know of no one who has seriously proposed taking the first option. Classical and semi-
classical logicians who do technical work on the paradoxes mostly tend to prefer the third
option: see [10] and [14]; also [9], where seven of the nine types of theories discussed fall under
option three. The option of choice among non-specialists seems to be option two, but some
specialists prefer it as well, e.g. [2] and [13]. (If the description of the latter as a classical
theory seems surprising, see [6].)

What about Kripke’s seminal [11]? That’s more complicated since Kripke offers a model-
theoretic semantics with no instructions on how to read the theory off the semantics. But if
we interpret him as suggesting that though the extension of ‘True’ is a fixed point, the logic
is classical, then his theory also falls under option two.

An alternative and I think more attractive interpretation of Kripke is to take the set of
acceptable sentences to coincide with the extension of ‘True’: they are both the contents of
the same fixed point. But if the fixed points are based on a Kleene semantics, this gives
a non-classical logic, and so is not germane to the discussion in this section. (This way
of interpreting Kripke has been advocated in [20]—not altogether consistently, in my view,
since Soames talks in terms of truth value gaps, which seems to presuppose the classical logic
interpretation. [18] clearly distinguishes the two ways of getting a theory from a Kripkean
fixed point, in the distinction between the theories there called KF and KFS.)

On the non-classical reading of Kripke, his solution is similar in sprit to the G-solutions
under discussion in this paper; however, the nonclassical logic one obtains from this way of
reading Kripke is unsatisfactorily weak, since Kleene semantics has no serious conditional.
G-solutions do much better in this regard.



or that its extension vary with context. Still, given classical logic (even in the
weak sense that includes only the validities and not the meta-rules), the above
three options are the only consistent ones when the subscript and context are
held fived.'!

A problem with all of the classical and semi-classical solutions is that they
prevent the notion of truth from fulfilling its generally accepted role. The stan-
dard story about why we need a notion of truth ([17], [12]) is that we need it to
make certain kinds of generalizations. For instance, the only way to generalize
over

(Snow is white) — ——(Snow is white)

(Grass is green) — ——(Grass is green)],
is to first restate them in terms of truth and then generalize using ordinary
quantifiers:

For every sentence, if it is true, so is its double negation.

But this says what we want it to say only if we assume the intersubstitutivity
of True({A)) with A: that is, the principle

Intersubstitutivity: If Y results from X by replacing some occur-
rences of A with True({A)), then X and Y entail each other. [This
needs to be restricted to cases where the substitution is into contexts
that aren’t quotational, intentional, etc.; but I’ll take the language
L to contain no such contexts.|

This principle entails the truth schema in classical logic, indeed in any logic in
which A « A is a logical truth. So the three classical and semi-classical theories
all reject the intersubstitutivity principle. Thus they fail to satisfy the purpose
of the notion.

For instance, we want
If everything Jones said is true then
to be equivalent to
If A; and ... and A,, then

on the assumption that what Jones said was exactly A, ..., A,. This requires
that the True(A;) be intersubstitutable with the A; inside the conditional, but
that won’t in general be so on any of these theories. The semi-classical the-
ory does better than the fully classical ones: it allows for intersubstitutivity of
True({A)) with A in more contexts. Indeed the fully classical ones don’t even
allow substitutivity for unembedded occurrences: True((A)) and A can’t be
mutually entailing in a classical theory that includes disjunction elimination (as
we'll see in the next section). But though the semi-classical theories do better,

1Tm putting aside solutions to the Liar paradox based on unmotivated syntactic restrictions
that prevent the formation of self-referential sentences. Very strong syntactic restrictions are
required for this, and the solutions are of little interest since they do not generalize to the
heterologicality paradox.



that isn’t good enough. An advantage of G-solutions is that not only do they
accept the Tarski schema, they accept the full Intersubstitivity Principle.

I conclude this section with some further remarks on the second classical
option; in particular, on a version of the second classical option that invokes a
hierarchy of truth predicates. This will play a role later in the paper, where I
will compare it to a hierarchy of strengthenings of a single truth predicate that
is involved in G-solutions.

A common theme among proponents of the second option is that the schema
(T) holds for all sentences that "express propositions", where to "express a
proposition" is to be either true or false, i.e. to either be true or have a true
negation. (On this view, expressing a proposition is much stronger than being
meaningful: it would be hard to argue that the "contingent Liar sentences" of
note 3 aren’t meaningful, but they are nonetheless taken not to express propo-
sitions.) So instead of (T) we have

(RT) [True({A)) V True((—A))] — [True((A)) < A].
Tt is easily seen that this is equivalent to the left-to-right half of (T), i.e. to
(LR)  True((A)) — A12

Obviously, then, a decent theory of truth containing (RT)/(LR) needs to con-
tain vastly more. (It’s compatible with (RT)/(LR) that nothing is true; or that
only sentences starting with the letter ‘B’ are true; etc.) The crucial question
for such a theory is, how are we to fill it out without leading to paradox?

It turns out that however we try to fill it out, we are led to the conclusion
that basic principles of the truth theory itself fail to be true. (They also fail
to be false, so that they come out as “not expressing propositions”.) Of course
any non-contingent Liar sentence is itself an assertion of the theory that the
theory asserts not to be true, but it presumably doesn’t count as one of the
basic principles of the theory. But what does count as a basic principle of the
theory is (RT), or its equivalent (LR). And Montague showed that with very
minimal extra assumptions, one can derive from (LR) a conclusion of form

—True[(True((M)) — M)],

i.e. that some specific instance of (LR) isn’t true. Most people regard it as a
serious defect of a theory that it declares central parts of itself untrue; and saying
that these parts “don’t express propositions” doesn’t appear to help much.

This is the point at which the idea of a hierarchy of truth predicates may
suggest itself. The idea is that we don’t have a general truth predicate, but
only a hierarchy of predicates ‘true,’, where the subscripts are notations for
ordinal numbers (in a suitably large initial segment of the ordinals that has no
last member). We then agree that the principles of the theory of truth, aren’t
true,, but try to ameliorate this by saying that they’re truey,,;. Call such a
view a stratified truth theory.

12In proving a given instance of schema (RT) from schema (LR) one uses two instances of
the latter, one for A and one for —A.



Besides their artificiality, stratified truth theories seriously limit what we can
express, in a way that undermines the point of the notion of truth. For instance,
suppose we disagree with someone’s overall theory of something, but haven’t
decided which part is wrong. The usual way of expressing our disagreement is
to say: not all of the claims of his theory are true. Without a general truth
predicate, what are we to do? The only obvious idea is to pick some large «,
and say “Not all of the claims of his theory are true,”. But this is likely to
fail its purpose since we needn’t know how large an o we need. (Indeed, there
would be strong pressure on each of us to use very high subscripts a even in
fairly ordinary circumstances, but however high we make it there is a significant
risk of it not being high enough to serve our purposes. This was the lesson of
the famous discussion of Nixon and Dean in [11]. Nixon and Dean wanted to
say that nothing the other said about Watergate was true, and to include those
assertions of the other in the scope of their own assertions; but to succeed, each
needed to employ a strictly higher subscript than the other.)

Indeed, the situation is even worse than this. For suppose that we want to
express disagreement with a stratified truth theorist’s overall “theory of truth”
(i.e. the theory he expresses with all of his ‘true,’ predicates), but that we
haven’t decided which part of that theory is wrong. Here the problem isn’t just
with knowing how high an a to pick; rather, no o that we pick could serve
its purpose. The reason is that it’s already part of the stratified theory that
some of its claims aren’t true,, namely, the principles about truth,; that’s why
the theorist introduced the notion of truthy,4i1. So we haven’t succeeded in
expressing our disagreement.

The problems just mentioned are really just an important special case of a
problem that I've argued to infect all classical and semi-classical theories: they
can’t give truth its proper role as a device of generalization. Except possibly for
dialetheic theories, which I will not consider here, restricting excluded middle
seems to be the only way to avoid crippling limitations on our notion of truth.

3. More on Rejecting Excluded Middle. It is important to note that in
classical logic you don’t need anything like the full strength of the truth schema
(T) (or the satisfaction schema (S)) to derive contradictions: indeed, if you
allow reasoning by cases as well as the classical validities, all that is required is
the two assumptions

(T-Elim) A follows from True((A))
and

(T-Introd) True({A)) follows from A

(or the analogous Elimination and Introduction rules for satisfaction). For using
these instead of (T), we can easily recast the derivation (i)-(iv) in Section 1 (with
True({Q)) as the B) as follows:

(i*) By (T-Elim), True({Q)) implies Q,'* which is equivalent to =True((Q));
hence True({Q)) implies the contradiction True({Q)) A ~True({Q));

13That is, Q follows from True({Q)). (One reader took my ‘A implies B’ to mean ‘if A then




(ii*) —True(Q) is equivalent to @, which by (T-Introd) implies True(Q); hence
—True((Q)) also implies the contradiction True((Q)) A ~True({Q)).

(iii*) Since True((Q))A—True({Q)) follows both from the assumption True((Q))
and from the assumption =True({Q)), then it follows from the assumption
True({Q)) V -True({Q)). (Reasoning by cases.)

(iv*) But True({Q)) V -True({Q)) is a logical truth, so we have a derivation
of the contradiction True({Q)) A =True({Q)).

(If we strengthened (T-Elim) to the assumption of the conditional True({A)) —
A, we could give a derivation that doesn’t involve reasoning by cases.)

In fact, we don’t even need the full strength of (T-Introd); we can make do
with the weaker assumption

(T-Incoherence) A and —T'rue((A)) are jointly inconsistent.

Inconsistency proof: True({Q)) implies @ by (T-Elim), and -True({Q)) im-
plies @Q since it is equivalent to @, so we derive @ using reasoning by cases
plus excluded middle. Using the other half of the equivalence between @ and
“True({Q)), we get Q@ A "True({Q)), which is inconsistent by (T-Incoherence).

The fact that the paradox arises from weaker assumptions than (T) is im-
portant for two reasons. First and most obviously, it means that if we insist on
keeping full classical logic we must do more than restrict (T), we must restrict
the weaker assumptions as well. But the second reason it’s important concerns
not classical solutions, but G-solutions: it gives rise to an important moral for
what G-solutions have to be like.

For even though G-solutions take truth to obey the Tarski schema (T),
we'll see that they recognize other “truth-like” predicates (e.g. ‘determinately
true’) that don’t obey the analog of (T) but do obey the analogs of (T-Elim)
and (T-Introd) (or at the very least, (T-Elim) and (T-Incoherence)). For each
truth-like predicate, there is a Liar-like sentence that asserts that it does not
instantiate this predicate. Reasoning as in (i*) and (ii*) is thus validated, and
since G-solutions accept reasoning by cases without restriction, paradox can
only be avoided by rejecting the application of excluded middle to these Liar-
like sentences formed from truth-like predicates. (Since excluded middle is to
hold within ordinary mathematics and physics, this means that no truth-like
predicates can be constructed within their vocabulary.) In short, G-solutions
are committed to the view that there can be no truth-like predicate for which
excluded middle can be assumed; as we’ll see, the conviction that there must be
truth-like predicates obeying excluded middle is one primary source of revenge
worries.

I close this section by trying to make clear what is involved in restricting
the application of excluded middle to certain sentences, e.g. the Liar sentence,

B’, and on this basis accused me here of illicitly extending (T-Elim) to hypothetical contexts;
but that is not why I mean by ‘implies’.)

10



when one accepts the intersubstitutivity of True({Q)) with Q. In particular,
what is the appropriate attitude to take to the claim True({Q))? According to
the sort of solution to the paradoxes I've sketched, one must reject the claim
that True({Q)) and also reject the claim that =True((Q)), since these claims
each imply a contradiction relative to any theory of truth that implies the Tarski
biconditionals. (One can take rejection as a primitive state of mind, involving at
the very least a refusal to accept; a slightly more informative account of rejection
can be found in [4] (Section 3).) We must likewise reject the corresponding
instance of excluded middle

Z:  True({Q))V ~True({Q)),

for it too leads to contradiction. And because we reject Z, our refusal to either
accept True({Q)) or accept =True({Q)) doesn’t seem appropriately described as
“agnosticism” about the truth of . We would be agnostic about True({Q)) if
we believed Z but were undecided which disjunct to believe; but when we reject
Z the very factuality of the claim that True({Q)) is being put into question, so
our not believing True({Q)) while also not believing =True({Q)) isn’t happily
described as “agnosticism”.

It should be immediately noted that a solution of this sort does not postulate
a “truth value gap” in @: it does not say that @ is neither true nor false, i.e. that
neither @) nor its negation is true. It also does not say that () is neither true nor
not true. Saying that ) is “gappy” or “non-bivalent” in either of these senses
would trivially entail that @ is not true, which (by the Tarski biconditionals
and modus ponens) leads to contradiction. Since the claim that Q is “gappy”
(non-bivalent) leads to contradiction, we must reject it.

That isn’t to say that we should believe that @) is bivalent (or that it is
not “gappy”; these are the same, assuming the equivalence of =—A to A, as I
henceforth shall). The claim that @ is bivalent or non-gappy amounts to

zx  True((Q)) V True((-Q));

this in turn amounts to Z (non-truth and falsity turn out to coincide as applied
to sentences in the language), and as we’ve seen, Z must be rejected.

If it seems odd that both the claim that @ is gappy and the claim that it
is not gappy lead to contradiction, it shouldn’t: from the fact that Gappy((Q))
and —=Gappy((Q)) each lead to contradiction, all we can conclude is that

7Z?  Gappy((Q)) V ~Gappy({Q))

leads to contradiction; so the proper conclusion is that this instance of excluded
middle must also be rejected.'* In other words, the claim that Q is “gappy”
has the same status as @ itself has. In particular, just as it is misleading to
declare ourselves “agnostic” about the Liar sentence, it is also misleading to

14ndeed whenever one rejects a given instance AV —A of excluded middle, one should also
reject the instance (AV —A)V —(AV —A), for they are equivalent by very uncontroversial rea-
soning; hence one should reject Bivalent({(A))V —Bivalent({A)). [Reason for the equivalence:
—(AV—A) implies —A, so (AV—-A)V-(AV-A) implies (AV—-A)V—A, which implies AV —A.
The other direction is trivial.]
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declare ourselves “agnostic” about the claim that the Liar sentence is “gappy”
or the claim that it is bivalent: for we don’t recognize that there is a fact to be
agnostic about.

I think it would be a serious problem if there were no way to assert the
"defective" status of ) within the language. As we’ll see, there is way; but it
can’t be done by saying that @ suffers a truth value gap.

4. The Berry-Richard paradox. I think that all of the semantic paradoxes
turn on excluded middle, though some of them (especially some of the ones in-
volving conditionals) do so in an indirect and unobvious fashion. I will make this
precise in Section 5. There I will introduce a language that contains a “quasi-
classical conditional” which obeys many of the classical laws for conditionals
even in the absence of excluded middle; moreover it reduces to the material
conditional when excluded middle is assumed for antecedent and consequent. I
will then state a result (proved elsewhere) according to which every semantic
“paradox” that can be formulated in this language has a solution that is com-
patible with the Tarski biconditionals. The solution may depend on the failure
of some of the classical laws for the conditional, but that failure will always be
traceable to a breakdown in excluded middle for the antecedent or consequent of
one of the conditionals in question. We thus diagnose these apparent paradoxes
as only apparent, they depend on illicit applications of excluded middle.

Of course, the fact that those apparent paradoxes that can be formulated in
the language turn out not be genuinely paradoxical does not settle the revenge
issue: settling that issue requires considering the possibility of expanding the
language to get new paradoxes. I will have a lot to say toward undermining the
idea of revenge in later sections.

First though I will consider how the paradoxes of definability fare on this
sort of view. There are a number of slightly different paradoxes of definability,
for instance Berry’s paradox and Richard’s paradox, but they all have the same
underlying idea. Because of its relevance later in the paper, I will focus attention
on the following variant of the Berry and Richard paradoxes.

Recall that L is a first order language adequate to its own syntax, and
that contains a satisfaction predicate. From that predicate we can define ‘L-
definable’:

z is L-definable if and only if there is at least one formula of L (with
exactly one free variable) that is satisfied by z and by nothing else.

Now, L is assumed to be built from a finite or countably infinite vocabulary,
so it contains only countably many formulas; from which it follows that only
countably many things are L-definable. But there are uncountably many ordinal
numbers; indeed, uncountably many countable ordinal numbers. So there are
(countable) ordinal numbers that are not L-definable. So there is a smallest
ordinal number that is not L-definable, and it must be unique. But then ‘v is
an ordinal number that is not L-definable but for which all smaller numbers are
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L-definable’ is uniquely satisfied by this ordinal, so it is L-definable after all,
which is a contradiction. That is the paradoxical line of argument.

Any solution to the paradoxes of satisfaction will implicitly contain a solu-
tion to this definability paradox. On classical logic solutions, if the language L
contains the predicate ‘satisfies’ then certain instances of schema (S) from Sec-
tion 1 are refutable; and in particular, if we define ‘L-definable’ from ‘satisfies’
as above, there will be counterinstances to even the more restricted schema

(Sdefin) For all x, x satisfies ‘v is L-definable’ if and only if z is L-definable.

This gives one possible diagnosis of the error in the argument: that it lies in the
inference from o being the uniquely smallest L-undefinable ordinal to ‘v is the
smallest L-undefinable ordinal’ being uniquely satisfied by o.

But on the approach that I've sketched, we are committed to maintaining
all instances of (S), and in particular all instances of (Sgefin). Where then does
the reasoning of the paradox go wrong?

Where the reasoning goes wrong, I think, is that it makes an implicit appli-
cation of excluded middle to a formula involving ‘L-definable’. Excluded middle
can be assumed for certain restricted definability predicates. For instance, let
Lo be obtained from L by deleting ‘satisfies’ and terms defined from it (such
as ‘definable’) or closely related to it; then excluded middle holds for formulas
that contain ‘Lo-definable’ (as long as they don’t contain problematic terms in
addition). There is no even prima facie problem about the least ordinal that is
not Lg-definable, since the description of it just given is not in Lg. Similarly for
expansions of Ly in which the application of ‘satisfies’ is somehow restricted in
a way that guarantees excluded middle (e.g. a language L; in which ‘z satisfies
y’ can occur only in the context ‘x satisfies y and y is an Lg-formula’, or a
language Lo in which ‘z satisfies y’ can occur only in the context ‘x satisfies y
and y is an Li-formula’; and given a well-defined hierarchy of such expansions,
each of which includes all the vocabulary of the previous, one gets a hierarchy
of definability predicates, each more inclusive than the previous. But for defin-
ability in the full language L, the fact that excluded middle must be rejected
for ‘satisfies’ suggests that it will almost certainly have to be rejected for the
predicate ‘L-definable’ defined from it; and the paradox shows that indeed it
does.

The implicit application of excluded middle to a formula involving ‘ L-definable’
occurred in the step from
(1)  There are ordinal numbers that are not L-definable
to
(2) There is a smallest ordinal number that is not L-definable.

To see that the inference from (1) to (2) depends on excluded middle, consider
any specific ordinal 3, and suppose that every ordinal less than 3 is L-definable.
Given this supposition, (2) says in effect

(3) Either 3 is not L-definable, or there is an ordinal a>f such that « is

13



not L-definable and all its predecessors are L-definable.
But this entails
(4) P is not L-definable or 8 is L-definable;

and so if we reject (4) we must reject (2).!°> But there is no call to reject (1):

there are certainly ordinals that are not L-definable, for uncountable ones can’t
be L-definable (and there may well be sufficiently large countable ones which
are definitely not L-definable too). So the inference from (1) to (2) relies on
excluded middle.

This resolution of the paradox may seem to have a high cost. For the in-
ference from “There are ordinals « such that F(a)” to “There is a smallest
ordinal « such that F(«a)” is absolutely fundamental to ordinary set-theoretic
reasoning; doesn’t what I’'m saying count as a huge and crippling restriction on
ordinary set theory? Not at all: ordinary set theory allows sets to be defined
only by “effectively classical” properties, that is, properties F' for which the
generalized law of excluded middle Vz[F(z) V =F(x)] holds. I'm not suggesting
any restriction whatever on the ordinary laws of set theory; what I am saying,
and what is independently quite obvious, is that one has to be very careful if
one wants to extend set theory by allowing properties (or formulas) that aren’t
known to be effectively classical into its axiom schemas.

This point is worth elaboration. Standard set theory (ZFC) contains two
axiom schemas (the schemas of Separation and Replacement). On a strict in-
terpretation of the theory, the allowable instances of the schema are just those
instances in the language of set theory; however, the “impure” set theory that
most of us accept and employ is more extensive than this, it allows instances of
the schemas in which physical vocabulary occurs (e.g. we take the separation
schema to allow us to pass from the existence of a set of all non-sets to the
existence of a set of all neutrinos). But when the law of excluded middle is not
assumed to hold unrestrictedly, there is a question of just how far the extension
should go. I think a suitable extension of the schema of separation to be the
rule

(Extended Separation) (Vx € z)(AzV-Az)F IyVe(z €y — z € z A A(x))

(allowing free parameters in the formula A(z)), where any vocabulary at all,
including ‘true’, can appear in A(x). Requiring excluded middle as an assump-
tion of separation seems reasonable: otherwise, we would license sets for which
membership in the set depends on whether the Liar sentence is true; given ex-
tensionality, this would lead at the very least to indeterminate identity claims
between sets, and it isn’t at all clear that paradox could be avoided even allow-
ing that. But Extended Separation as formulated above avoids such oddities,
while allowing such sets as the set of true sentences of number theory (and the
set of true sentences of set theory that don’t contain ‘true’); it seems to me as
much of an extension of separation to the language containing ‘true’ as we ought
to want.

15Which isn’t to say that we should accept the negation of (2): that would require (an
existential quantification of) a negation of excluded middle, which would lead to contradiction.
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It is easy to see that if the formula F(x) is allowed to contain non-classical
vocabulary, then Extended Separation (together with the fact that every non-
empty set has a member of least rank) justifies reasoning from “There is at least
one ordinal « such that F'(«) and such that for all ordinals f<a, F(8) V —F(5)”
to “There is a smallest ordinal « such that F'(a)”. And in applications of
set theory in which the formula F(x) is in standard mathematical or physical
vocabulary, we don’t need to bother stating the italicized clause since it is always
satisfied. But once we allow F(z) to contain notions like ‘true’ or ‘satisfies’ or
notions explained in terms of them such as ‘L-definable’, that clause is required:
forgetting it involves an illicit assumption of excluded middle, and it is on that
that the Berry-Richard paradox rests.'®

Part Two: Model Theory and Revenge

5. Conditionals and G-Logics. It’s now time to give slightly more detail
about the sort of logic I have in mind for dealing with the paradoxes—a G-
logic, T'll call it. My plan is not to specify any one such logic, but to specify
a class of logics any of which would deal with the paradoxes along the lines
I have sketched. The logics differ only in the details of the treatment of the
conditional.

The simplest way to specify the class of G-logics is to specify a type of
model-theoretic semantics for members of this class—a G-semantics. For any
specific G-logic £, the corresponding G-semantics will give a definition of £-valid
inference within classical set theory; since classical set theory is accepted both
by the advocates of £ and their classical opponents, the definition of £-validity
will be intelligible to all.

I need to make a small generalization of the usual framework for model-
theoretic definitions of validity: I need to allow the size of the valuation space
on which the model is based to depend on the size of the domain of the model.
More fully, for any cardinal number ¢, we fix a value space V, with a specific
subset D. (the “designated values” of V.); the various V. may all be the same,
but needn’t be. We then stipulate that a c-model M consists of a non-empty
domain U of cardinality no greater than c for the quantifiers of the language to
range over, together with an assignment of an object in U to each name of the
language, an operation on U to each function symbol in the language, and a "V-
valued extension" to each predicate in the language; where a V.-valued extension
(for an n-place predicate) is a function that assigns members of V. to n-tuples
of members of U. This apparatus (in conjunction with certain operations on
V.) will be used to assign a value |A|ps in V. to each sentence A of the language

16What I’ve said here about the “least ordinal principle” is true of the least number principle
in arithmetic: it too requires an excluded middle premise. Also, it’s worth remarking that
even positive forms of induction (ordinary or transfinite) must be treated with care when the
predicate in question is not assumed to obey excluded middle: e.g., the rule form of induction
Va|(VB8 < a)(FB) — Fa] EVaFa
is generally valid, but an excluded middle premise is required for getting the conditional from
this.
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(“the semantic value of A in M”). We then define an inference among sentences
of the language to be c-valid (in the given logic £) if in every c-model in which
the premises take on designated values of V., the conclusion does too. And we
define it to be walid if it is c-valid for every cardinal number c. (The definition
extends in a natural way to inferences among formulas with free variables.) As
remarked above, this notion of validity is definable in classical set theory, which
is something that advocates of £ and advocates of classical logic both accept.

The idea of defining validity in a model-theoretic semantics formulated in
classical set theory may seem to make it inevitable that some sort of paradox
will arise for the account. For we’ve seen above that a G-solution can’t allow
for “truth-like” predicates to which excluded middle applies. But isn’t ‘has a
designated value’ a “truth-like” predicate? And doesn’t defining it in classical
set theory guarantee that excluded middle must hold for it? It may seem, then,
that if we are going to pursue a G-solution to the paradoxes we must explain the
logic in some other way than by a model theory given in classical set-theoretic
terms. Having noted this apparent problem I will put it aside until Sections 8
and 9, where I will argue that it rests upon a misunderstanding of the nature
of model theory.

Turning now to the specifics of the model theory for G-logics, what should
we take the value spaces V. to be, and how should we assign values in them
to sentences? If it weren’t for the conditional, we could use a simple 3-valued
semantics (whatever the cardinality of the model): the values might be called
0, % and 1, and we would assign one of these values to each sentence; or more
generally to each formula relative to an assignment s of objects in the domain
of M to its free variables. (The assignments are of course all relative to a model
as well as to an assignment, and indeed, the set of assignments depends on the
domain of M; but for convenience I'll omit the reference to M, and often the
reference to s as well, in what follows.) We’d take the value of a conjunction
(relative to s) to be the minimum of the values (relative to s) of the conjuncts,
the value of a disjunction the maximum, and the value of =A to be 1 minus
the value of A. The quantifiers are analogous to conjunction and disjunction.
(More precisely, the value of Va A relative to s is the minimum of the value of A
relative to all the various expansions of s obtained by assigning objects to z.)
We'd take 1 as the sole designated value: that is, we’'d take the valid inferences
to be those that in all valuations preserve the value 1. Then no sentence and
its negation can both be designated; and instances of excluded middle needn’t
be designated, since they can have value % This is called the strong Kleene
semantics for the conditional-free language, and the logic for the conditional-
free language that it generates is called Kleene logic. It’s the semantics Kripke
mostly used in [11].

This simple approach won’t work if the language is to contain a conditional
validating the schemas (T) and (S), for it is not hard to see that there is no
3-valued connective behaving anything like a conditional for which the asso-
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ciated Tarski biconditionals all can have value 1.!7 But the approach can be
generalized: we can let the spaces V. have many more than three values (in-
deed, for each cardinal ¢ we can take V. to have more than ¢ values), and we
can take each V, to be only partially ordered instead of linearly ordered. I will
consider only the case where each V, has a least element 0 and a greatest ele-
ment 1. I will assume that there is an “up-down symmetry” operation * on V,:
an operation that reverses order and which when applied twice to any element
leads back to that element. This operation will correspond to negation. I will
also require that V. be “c-complete”: that is, each set of members of V. that
has cardinality no greater than ¢ must have a greatest lower bound and a least
upper bound. (In all cases of interest the models are infinite, so c¢ is infinite;
so “c-completeness” implies “2-completeness”, i.e. every pair of elements has
a greatest lower bound and least upper bound. If we wanted to consider the
case where ¢ < 2, we’d have to add a 2-completeness requirement.) Using c-
completeness (and 2-completeness), we can take the value of A A B to be the
greatest lower bound of the values of A and of B, and the value of Yz A to be the
greatest lower bound of the values of A relative to all the possible assignments
of objects to x; similarly for V and 3, using least upper bounds.

We also want to guarantee that as in the 3-valued semantics, V-Elimination
and F-elimination hold. I will stick to the simplest case, in which 1 is the sole
designated value.'® Then the most natural way to guarantee the validity of
V-Elimination is to stipulate that the least upper bound of two elements of V,
isn’t 1 unless one of those elements is 1. This guarantees V-Elimination, in the
restricted form that if the inferences from A to C and from B to C' are both
valid then so is that from AV B to C. And we can get from this to the more
general form (that if the inferences from I" and A to C and from I" and B to
C' are both valid then so is that from T' and A V B to C) if we assume the
distributive law; for this and other reasons, I will assume distributivity. Similar
remarks apply to F-elimination: for the restricted form without side formulas
I', we assume that if S is any subset of V. whose cardinality is no greater than
¢, then 1 is not the least upper bound of S unless 1 is a member of ;'Y and
we get the unrestricted form that allows for side formulas if we make a weak
infinite distributivity assumption.2’

Because of the features mentioned so far, the spaces V. can be regarded as

1"The 3-valued conditional that “comes closest” to adequacy is the Lukasiewicz 3-valued
conditional (where |A — B|is 1if |A| < |B|, 0if |[A] = 1 and |B| = 0, and % otherwise).
But even here, if C' is a Curry-like sentence that asserts that if it is true then so is the Liar
sentence @, then the Tarski biconditionals for @ and C can’t both get value 1.

18 A more general approach would take the set of designated values to be any prime filter
not containing both v and v* for any v, where * is the operator corresponding to negation.

191n typical cases V. — {1} will have no maximum member. (Indeed, we’ll see some reason
in Section 10 to impose a condition (dc) on a satisfactory G-semantics that would entail this.)
In such cases, 1 must be the least upper bound of V. — {1}, so the condition in the text implies
that V. must have greater cardinality than ¢ and hence greater than the cardinality of any
model that has it for a value space. This is why we must allow the value space to depend on
an upper bound of the cardinalities of the models that employ it.

20Namely aM(Ua{ba}) = Ua{aMba}, when {b} has cardinality no greater than c.
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a “fine-graining” of the 3-valued semantics: in any such space, the values other
than 0 and 1 simply partition the value % given in the 3-valued semantics. As
a result, when considering inferences among conditional-free sentences it makes
no difference whether you use the 3-valued semantics or one of the V.. So the

logic governing conditional-free sentences is just Kleene-logic.

The point of the fine-graining is to handle the conditional. What we need to
do is add an operator = on the spaces V. of fine-grained values to correspond
to the —. The operator should obey reasonable laws, of which the foremost is

(I) A — B should have value 1 when and only when the value of A is less than
or equal to that of B.

Defining A < B as (A — B) A (B — A), (I) implies that A < B has value 1
if and only if A and B have the same value. Given that all the operators are
evaluated value-functionally, this then implies

(Icor) When A < B has value 1 and Xp results from X4 by substituting B
for one or more occurrences of A then Xpg should have the same value as
X4.

I’ll say that two formulas A and B are of equal strength if A < B is valid,
and that A is at least as strong as B if A — B is valid. Because of (I), the claim
that A is at least as strong as B amounts to the claim that for every model M
and every c at least as big as the domain of M, |A|y < |B|a in Vo. So when A
is at least as strong as B, the inference from A to B is valid; the converse claim
fails.

Further reasonable laws for the conditional include the following:

(II) Strengthening of the consequent should strengthen the conditional and
strengthening of the antecedent should weaken it;

(III) If A has value 1 and B has value 0 then A — B should have value 0;
and probably
(IV) A — B should have the same value as =B — —A.

(I) (together with the assumptions we’ve made about negation) already implied
a weak form of (IV), viz. that A — B should have the value 1 if and only if
-B — —A does; the extension (IV) seems highly natural, but will play only a
tangential role in what follows.

Note that (I) and (III) together imply that when the values of A and B are
restricted to the set {0,1} (i.e., when AV —A and BV —B take on value 1),
then the conditional A — B is to be evaluated just like the material conditional
= AV B, which given the restriction is bound to behave classically. So any failure
of a classical law for the conditional is ultimately due to a failure of excluded
middle in an antecedent or consequent.
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‘We might expand this list of reasonable laws in various ways, but for the sake
both of generality and simplicity let’s leave it at that;?' then a DMC-semantics
(“deMorgan semantics with conditional”) is any semantics based on partially
ordered sets V. with operators that satisfy the laws mentioned. There are many
examples of DMC-semantics in the literature: the most famous examples are
the various Lukasiewicz multivalued logics. (In the Lukasiewicz logics, the same
value space—e.g. the interval of real numbers—is used for every cardinal ¢; and
the partial order < is in fact a linear order.)

Unfortunately, most DMC-semantics will not suffice for our needs. Indeed,
we’ve seen that no semantics consistent with the truth schema (T) can permit a
“truth-like operator” that obeys excluded middle; but in most versions of DMC-
semantics, including the Lukasiewicz versions, such operators can be defined
using the conditional.

Our overall goal is a DMC-semantics that is consistent with the truth schema
(T), or more generally the satisfaction schema (S). Given (I.r), this requires
that there be models in which for each sentence A, True({A)) has the same
value as A; and for each formula A with one free variable, Satisfies(z, (4))
always has the same value as the result A, of replacing all free occurrences
of the free variable in A by ‘z’.2? That’s what consistency with (T) and (S)
require. Actually what we want is more than mere consistency, we want a kind
of “conservativeness” result involving “consistency with any standard starting
model”. Basically what this requires is that any standard "starting model"
(classical model My for the fragment Ly not containing ‘True’ and ‘Satisfies’)
can be converted to a model of the DMC semantics that meets these conditions
on ‘True’ and ‘Satisfies’ and whose part not involving ‘True’ and ‘Satisfies’ "looks
just like" My.?* (Whenever in the rest of the paper I talk of consistently adding
the truth schema to a semantics, what I really mean is this.) Let a G-semantics
be any DMC-semantics that meets this conservativeness requirement.

There are in the literature several different G-semantics: several solutions to
the paradoxes of the general sort I've sketched that give all the biconditionals of

21 For later reference I mention a strengthening of (II1):
(III,) If A has greater value than B then A — B should have value 0.

If the values were linearly ordered, this with (I) would yield excluded middle for conditional
claims, which would inevitably breed paradox; but I know of no system adequate to the
paradoxes whose values are linearly ordered, and the published G-solutions do all satisfy
(I11).

22With suitable change of bound variables in A, if 2 occurs in A so as to create a conflixct
with the substitution.

23By a standard model T mean one whose syntactic part is standard (i.e. for each ez in
the domain there are only finitely many ej in the domain for which (e1, e2) satisfies ‘v; and
vg are expressions and v is part of v2’); equivalently, whose arithmetic is standard. The
"looks just like Mp" condition means that the two models have the same domain and the
same assignments to individual constants and function symbols, and that M assigns to any
n-place predicate of Lo a function that maps any n-tuple into 1 if it is in the Mp-extension of
the predicate and into 0 otherwise.

19



form (T) and (S) value 1.2* Given (Ic,,), this means that they also validate the
intersubstitutivity of True({A)) with A, even within the scope of other operators
such as the conditional: if X results from Y by substituting True((A)) for one
or more occurrences of A, then X and Y get the same value; so X — Y and
its converse get value 1. (More generally, they validate the intersubstitutivity
of Satisfies(x, (A)) with A, even within the scope of other operators. In what
follows I will frequently state my claims just for truth, leaving the generalization
to satisfaction tacit.) Logics that can be based on such semantics ( G-logics) are
the ones that will be of interest in what follows.

For purposes of this paper it will be convenient to use the term ‘valid’ for
G-logics in a very broad sense, one which counts every arithmetic truth, a large
amount of set theory, and the basic principles of truth and satisfaction as "valid".
To be explicit, let a quasi-correct model of the ‘true’-free fragment Ly of L be a
model My of Ly such that for some inaccessible cardinal x, if Ur is the subset
of the domain that does not satisfy ‘Set’, then the set-theoretic portion of M,
consists of the set of all (not necessarily pure) sets of rank less than x built
from urelements in Ur (together with the usual € relation on this domain). Let
a standard set-theoretic model for L (in a given G-semantics) be a model of L
with valuation space V. for which the model for the ‘true’-free fragment is a
quasi-correct model of cardinality no greater than ¢, and in which all instances
of the schemas (T) and (S) get value 1 (when syntax is developed in ZFC in
a standard way). Then I will take an inference to be wvalid in the G-logic if it
preserves the designated value 1 in any standard set-theoretic model of the G-
logic. For future reference, I note that the following three set-theoretic principles
come out valid in this sense even when extended to the full language containing
‘True’ and ‘Satisfies’: (i) the Extended Separation Schema of Section 4; (ii) the
rule form of transfinite induction, mentioned in note 16, and (iii) the "choice
principle" (Vz € X)(3y)F(z,y) E 3f)[dom(f) = X A (Vo € X)F(z, fr)].?

6. Semantic Values and Truth. How do the semantic values in a G-
semantics relate to the notion of truth? Putting aside a complication to be
discussed in the next section, we can say that the following holds for "reason-
able" models:?¢

e Sentences with value 1 are true;

240ne is almost explicit in [3] and fully explicit in [5]; more mathematical details about it
can be found in [21]. Another can be found in [7]; this one was inspired by [22], which is in the
general spirit of a G-semantics but fails to satisfy intersubstitutivity of truth and satisfaction
within conditionals. One can also modify Lukasiewicz continuum-valued semantics to get a
G-solution, using the basic ideas from [3]. I suspect that there are many other possibilities as
yet undiscovered. A much earlier paper offering something close to a G-semantics is [1].

25(i) and (ii) are completely evident given the quasi-correctness of the underlying model.
(iii): if the premise to have value 1 in the model, then using the axiom of choice it must
be that for some function g with domain {o | ||z € X|lo = 1}, [[F(z,y)llo,g(o) = 1 for all
o € dom(g). By the quasi-correctness of the underlying model, this g must be in the model,
from which it follows that the conclusion must get value 1.

26We'll see there that even in classical semantics, the conditions may fail for some sentences
whose quantifiers range over sets of arbitrarily high rank. You can take the discussion in this
section to apply only to sentences with suitably bounded quantifiers.
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e Sentences with value 0 are false (i.e., have true negations).

These claims are natural given the semantics. If a sentence has value 1 then
anyone who knows that it has this status can assert it; and since the claim
that A is true is equivalent to A itself, he or she can then assert that it is
true. Similarly, anyone who knows the status of a sentence with value 0 can
assert that it is false: for its negation must have value 1, so we can assert the
truth of —=A and hence the falsity of A. This is intended only as an informal
argument; that is the best that can be expected for connecting notions of these
two different kinds.

How about sentences that (we know to) have intermediate values? It is
sometimes assumed that they are neither true nor false, but that does not fit
with what I've already stipulated, in particular with the intersubstitutivity of
True({A)) with A. We’ve seen this already with Liar sentences: they must have
an intermediate value, but we can’t assert that they aren’t true since that would
lead to contradiction, so we certainly can’t assert that they aren’t either true or
false. But the point holds more generally. Since falsehood is equivalent to truth
of the negation, to say of a sentence A that it is neither true nor false would be
to say

—True((A)) A ~True((—A)).
But by the intersubstitutivity of True((A)) with A, that would be equivalent
to saying

—AN A,

i.e. to accepting a contradiction; which is illegitimate in this logic since contra-
dictions can never get the only designated value, viz. 1. So even for sentences
for which we can easily show that they can’t have value 0 or 1, we must reject
the claim that they are neither true nor false. (Of course if we know them to
have intermediate truth value, we also won’t assert that they are either true
or false; nor will we assert that they are either true, false, or neither true nor
false.)

Is there anything we can say about the truth and falsity of sentences with
intermediate semantic values? Yes. Some examples:

e When the value of A is less than or equal to that of B, then if A is true
B is true and if B is false A is false.

e If A and B are both true, so is A A B, and if AV B is true then at least
one of A and B is true.?”

The claims in the second bullet each result directly from three applications of
the equivalence between True({C)) and C (together with the fact that ‘A’ and
‘v’ are transcriptions of ‘and’ and ‘or’). And those in the first bullet can be

27Tt is tempting to summarize these two bulleted laws by saying that truth is a “fuzzy prime
filter” on the space of values— “fuzzy” because it is indeterminate whether any given sentence
with intermediate truth value is in it.
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reduced to the two that were informally argued for two paragraphs back. For
if the value of A is less than or equal to that of B, then the value of A — B is
1; so by the claim of two paragraphs back, A — B is true, and hence (by the
intersubstitutivity properties of truth and the fact that ‘—’ means ‘if ...then’)
if A is true then so is B. Similarly for the falsehood claims, using the law (IV)
for the conditional. (This is the only place in the paper I will rely on (IV).)

In sum, there is a lot we can say about the connection between the semantic
values and truth and falsity; but we can’t say of any claim with intermediate
value either that it is true or that it isn’t. Again, it wouldn’t be appropriate
to say that we're ignorant about whether these sentences are true. For we are
ignorant about whether A is true when either A is true or A is not true but we
don’t know which; but in this case the assumption that either A is true or A is
not true cannot be made.

7. Revenge Problems: Introductory Remarks. Since one of the re-
quirements of a G-logic was that it be consistent with the instances of (T) and
(S) all having value 1 (or rather, the stronger “conservativeness” requirement
sketched at the end of section 5), there is no danger that there are any gen-
uine paradoxes statable in the language: any apparent paradox statable in the
language has a solution that is consistent with the instances of these schemas.
Thus a vast array of apparent paradoxes (e.g. a Curry-like paradox involving a
sentence C' that asserts that if it’s true then so is the Liar sentence) are auto-
matically solved. But it might be argued that the language is expressively weak,
in that certain notions that we can’t easily do without are inexpressible in it;
and that including those notions within the language would inevitably breed
new paradoxes. This is the general idea behind revenge problems.

One notion to worry about is determinacy. We've seen that we can’t without
contradiction declare that the Liar sentence isn’t true; but we nonetheless reject
the Liar sentence (since it leads to contradiction), and it seems that there is some
important sense in which we believe that it is not determinately true. But if
we recognize such a sense of determinacy, then a full solution to the paradoxes
must consider sentences that can include this notion as well as ‘True’ and ‘—’
(and all the other notions in the original language).

I agree with this, and will discuss how a G-logic can accommodate it in
Section 10. Before that, though, I want to consider one particular form of the
worry that I do not agree with. This worry involves a particular kind of notion
of determinacy, one that is thought to be somehow read off the model-theoretic
semantics. In Section 9 I will give two “simple revenge arguments” based on this
form of the worry, and argue that they are mistaken. But first I will prepare the
way for my reply, by trying to remove what I think are common misconceptions
about model-theoretic semantics.

Not all revenge arguments are based on misconceptions about model theory:
I will discuss what I see as a much more interesting revenge argument, not based
on such a misconception, in Sections 13-20. I think there is some tendency in
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discussion of these matters for the “simple” and “sophisticated” arguments to
become intertwined, so it is important to deal with the simple ones before dealing
with the sophisticated ones.

8. Model-theoretic Semantics. In Section 5 I sketched a model-theoretic
semantics for the language L, in classical set theory. What is the value of giving
such a semantics? The obvious answer, and the one I gave, is that such a
semantics enables us to give a set-theoretic definition of a notion of logical
validity for the language. When, as here, the language of set theory is part of
L and is assumed to effectively obey classical logic (by virtue of AV —A always
being assumed, when A is in the language of set theory), we are using what is
in effect a classical part of L to define validity for the full L.

That it is possible to adequately develop the theory of validity for L within
a classical portion of L rests on a presupposition. It presupposes that excluded
middle holds of logical notions like implication: that is, it presupposes that if T’
is a set of sentences and B is a sentence, either I implies B or it doesn’t. This
presupposition seems reasonable to me (though it is not beyond question); but
even if it is rejected, the set-theoretic definition of validity gives a useful first
approximation, that can be grasped by the advocate of classical logic as a first
step toward understanding how to reason in the non-classical logic.

What if we shift from explaining validity to explaining truth? In my view,
model theory plays at best a very indirect role in explaining truth. Rather,
truth is directly explained by means of Schema (T), and model theory enters in
only in helping us understand the logical connectives that occur in instances of
Schema (T). More fully, (i) model theory gives an account of validity for the non-
classical logic, which tells us a lot about how to reason with the connectives in
the logic; (ii) once we come to understand how to reason in the logic we will fully
understand its connectives; (iii) when we understand the connectives, together
with the primitive non-logical symbols, then we will understand the sentences
of the language; and (iv) that means that we will understand what it is for a
sentence of the language to be true, given that we accept all instances of the
schema (T).2® So it is only through its role in explaining validity that model-
theoretic semantics helps convey an understanding of truth for L-sentences.

I won’t argue here for this positive view of how we understand the notion
of truth for L-sentences. What I will do, though, is try to undermine the idea
that a model theoretic semantics could have any more direct role to play in our
understanding of truth.

The first point to be made here depends on the fact that the model theory is
a model theory for a non-classical logic, but is being given within an effectively

280f course, we want to be able to prove generalizations about truth that don’t follow from
the instances of (T) (though maybe they follow from the schema understood in a broader
sense—see [8]). It is doubtful, though, that these are required for understanding the notion.
Even if they are, my basic point is that our understanding of ‘true’ is given by the acquisition
of a theory that contains it; the assumption that this theory consists only of Schema (T) is
completely inessential to this basic point.

23



classical part of the language, namely set theory. The point is an obvious one:
if we are to use a logic without excluded middle to handle the paradoxes, such
instances of excluded middle as

True((@)) V ~True((Q))

must be unacceptable (where @ is the Liar sentence). But if ‘True’ were defined
in set-theoretic terms, we would have to accept it, given that excluded middle
holds within set theory. So a model-theoretic semantics for a non-classical lan-
guage can’t possibly explain the notion of truth. (It also can’t explain the notion
of determinate truth or any other such notion; for according to G-solutions no
such notion can be subject to excluded middle, as they would have to if defined
in classical set theory. I will have much more to say about determinate truth in
later sections.)

There is a second point with the same conclusion, and this one arises even
for the model theory of classical languages. It is based on Tarski’s theorem
about the undefinability of ‘true-in-L’ in the ‘true’-free portion of L. Tarski
stated the theorem for classical languages only, but obviously it extends to non-
classical languages if we assume that their ‘true’-free portion is classical, since a
definition of ‘true-in-L’ in the subpart Lg of L that doesn’t contain ‘true’ would
yield a definition of ‘true-in-Lg’ in Lg.

How is it that we can use classical set theory to define ‘the semantic value
of A relative to a model’, but can’t use it to define ‘true’? The answer is that
semantic value is relative to a model, and that truth (in the intended sense, the
sense that obeys the Tarski schema (T)) is not. And the crucial point about
the relativity to a model is that in a model, the quantifiers are restricted to the
members of a set; they do not range over absolutely everything. Without this,
the explicit definition of semantic value would not be possible.

If we want to think of the model-theoretic semantics as telling us not just
about validity but about truth, then we will have a special interest in what we
might call homophonic models: models which assign to a name its real bearer
and analogously for function symbols, and which in the classical case assign
to a predicate those objects in its real extension that are also in the domain
of the model. But truth-in-a-homophonic-model must be distinguished from
truth (even in the classical context where claims about truth obey the law of
excluded middle). To say that a sentence is true in a homophonic model M
is to say in effect that it would be true if its quantifiers were restricted to the
domain of M. That can be defined (if the model M is definable); but by it’s
very model-relativity it diverges from the notion of truth.

Consider a classical model for the ‘true’-free part Ly of the language L. Lg
includes standard set theory. Suppose we take a highly natural model for L, say
the homophonic model whose domain consists of all non-sets together with all
sets of rank less than the first inaccessible cardinal; call this homophonic model
M; .2 This assumes of course that there are inaccessible cardinals; otherwise

29 My is thus "quasi-correct" (as defined at the end of Section 5) as well as homophonic.
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there would be no such model, so we’d have to use a different example. But now
consider the sentence ‘There are inaccessible cardinals’: it’s true, but false in
My, i.e. has semantic value 0 in Mj; its negation is false, but has value 1 in M;.
Having semantic value 1 in M; doesn’t correspond to truth, or to determinate
truth, or anything like that, even in the classical sublanguage Lo of L. The
point made here for M7 applies to any other model that can be defined within
set theory, by Tarski’s Theorem, and this includes all models of set theory that
are at all “natural”. (Indeed, the point has an extension to “unnatural” models
of set theory that are not set-theoretically definable: see [3], n. 24.)

The term ‘model” is sometimes employed in a broader sense than I have
been taking it, a sense in which we give a model by specifying a domain that
needn’t be a set. If this is done in the context of a theory in which we quantify
over proper classes as well as sets, it obviously changes nothing important: the
sentence ‘There are proper classes’ will come out having value 0 in the model
even though it is (according to the theory) true (and even though the model
is homophonic and quasi-correct). If it is done in the context of a theory in
which we don’t quantify over proper classes but regard ‘proper class’ talk as
a dispensable manner of speaking to be construed in terms of language, then
Tarski’s undefinability theorem applies: the notion of truth or semantic value in
a proper class model is not explicitly definable in the set-theoretic language; in
reasoning with it, we are going beyond standard set theory, we are reasoning in
a set theory expanded by adding a notion of set-theoretic truth. (And of course
we have then left the notion of truth for arbitrary sentences in this expanded
language undefined.)

One might think I am making too much of the fact that ‘true-in-Lgy’ isn’t
explicitly definable in Ly, when Ly is a classical language: after all, it is induc-
tively definable in Lg,>* and the problem is only that this inductive definition
can’t be made explicit because the quantifiers range over everything. I'm not
sure why the possibility of inductive definition in the classical case should be
thought to undermine what I’ve said, but there’s no need to go into that: for it
is completely irrelevant to the case of actual interest in this paper, the semantics
of the non-classical languages used for the paradoxes. For in every case of which
I am aware, the model-theoretic semantics used for those languages requires the
quantifiers to be restricted even in giving the inductive definition of semantic
value. This is certainly so for any model theoretic semantics that builds on a
Kripke-like model theory (see [11]), for that requires an inductive construction
whose first step is an explicit definition of truth for the ‘true’-free sublanguage;
if the quantifiers in the language weren’t restricted to the members of a given
set, the inductive specification couldn’t get off the ground.

Indeed, for most G-solutions the point is even more striking. They build
on Kripke’s theory of truth, and thus are subject to the previous observation.

(These requirements are somewhat independent: e.g., quasi-correctness requires homophony
in the set-theoretic vocabulary but not elsewhere.)

300r to be pedantic, the term ‘satisfies in Lo’, from which ‘true in Lo’ is explicitly definable,
can be inductively defined in Lg.
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But in addition, the cardinality of the evaluation space V must (in typical cases
anyway—see note 19) be larger than the cardinality of the starting model. This
fact seems to me to seriously undermine the idea that we can somehow extrapo-
late an understanding of a model-independent notion like truth or determinate
truth from the model-dependent notions: for if we were to try to somehow ex-
trapolate from the case of models on domains with a cardinality ¢ and valuation
spaces with a cardinality f(c) strictly bigger than ¢ to the case of “models”
whose domain is absolutely everything, this would seem to require a valuation
space “strictly bigger than absolute infinity”, i.e. not only with more members
than any set but with more members than “the totality of absolutely every-
thing”. T don’t think such an extrapolation possible: model-theoretic notions
are one thing, truth and determinate truth are something else again.

To summarize this section, it is very dangerous to draw conclusions about
truth and related notions from model-theoretic semantics, for at least two rea-
sons: (a) because the model-theoretic semantics is in a classical metalanguage,
so that excluded middle is assumed throughout; (b) because even the homo-
phonic models falsify how the language works by taking the quantifiers to range
over a certain set M (the domain of the model) rather than ranging over ab-
solutely everything. Because of these two facts, the notion of semantic value
is inevitably a somewhat artificial construction that can only be understood as
model-relative, and conclusions about how sentences are to be evaluated with
respect to properties that are not model-relative (for instance, truth, determi-
nate truth, and so forth) are highly problematic. If such conclusions can be
drawn at all, it is only with extreme caution.

9. The Simplest Revenge Arguments. I think that the points in the
preceding section can be used to undermine the following two revenge argu-
ments. (More difficult revenge arguments will be considered later on.) These
two arguments don’t depend much on the details of the G-semantics.

Simple inferential revenge argument: According to the seman-
tics, the space of semantic values is partitioned into two classes, the
designated and the undesignated; and the semantics assumes des-
tgnatedness to be a classical notion, that is, each sentence is either
designated or undesignated. But suppose we had in the language
the predicate ‘has a designated value’. The predicate would not
only obey excluded middle, it would also need to be “truth-like” in
the sense of Section 1. That is, the following inferences would need

to be valid:

[Des-Elim] Designated({A)) E A

and

[Des-Incoher] A, —Designated({A)) F L (where L is an absur-
dity).

Indeed, we’d probably want to strengthen the former to
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E Designated({A)) — A
and the latter to

A F Designated({A)).

But even without these strengthenings, [Des-Elim| and [Des-Incoher]
lead to absurdity, using a “super-Liar” sentence @), that asserts that
it doesn’t have a designated value, by the reasoning near the end of
Section 1. (To review: Designated({Q.)) and —Designated({Q.))
each imply Q. (the first by [Des-Elim], the second by the definition
of QQ.), so using reasoning by cases plus excluded middle we get Q.;
but then by the definition of Q. we also get ~Designated({Q.)),
and these two claims together are absurd by (Des-Incoher).)

It seems that if we allow the notion of designatedness into the language, as-
sumptions about it that appear almost inevitable lead to contradiction.

Before evaluating this argument, let’s consider a semantic variant:

Simple semantic revenge argument: As in the inferential ver-
sion, we argue that if we had in the language the predicate ‘has a
designated value’ then we could form a “super-Liar” sentence Q,; so

(*) Q« < ~Designated({Qx))

must have a designated value. But this requires

(**) Q. has designated value if and only if ~Designated({Q.)) has
designated value.

But if Q. has a designated value, then Designated((Q.)) should too,
and so —Designated((Q.)) should not have designated value. So
given (**), the assumption that Q. has designated value is absurd.
Similarly, if Q. does not have designated value, —Designated({Q.))
should have designated value; so given (**), the assumption that Q.
does not have designated value is also absurd. But @, either has
a designated value or doesn’t (the semantics being classical), so we
are landed in an absurdity either way.

Again, it looks like something really unattractive is required, if we allow the
notion of designatedness into the language.

What the proponent of either form of the argument holds, then, is that if
we allow a designatedness predicate into the language that we are semantically
evaluating, we have a paradox: we are led into contradiction unless we abandon
an assumption that is central to the intuitive meaning of the notion. And if
we don’t allow such a predicate into the language that we are semantically
evaluating, then our solution to the paradoxes works only because the language
being evaluated is expressively incomplete.
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A possible reply to both arguments, though not one I find at all attractive,
is in terms of “levels of language”. According to this possible reply, we have to
introduce a whole hierarchy of value spaces V1), V(2),... and a corresponding
hierarchy of designatedness predicates; the paradoxes arise, on this view, by
assuming that sentences containing a given designatedness predicate Des, are
themselves to be evaluated in terms of Des,, when in reality they are to be
evaluated in terms of Des,1. (In the semantic version, the claim would pre-
sumably be that sentences containing Des, are simply unevaluable in V(,), but
only in V(441) and higher. In the inferential version, the claim would presum-
ably be that the inference rule A E Des, ({A)) (or A, ~Des,({A)) E L) must be
restricted to the case where A has no Des predicate subscripted o or higher.)
These solutions are formally adequate, but in invoking such a hierarchy of value
spaces and of unrelated Des, predicates they seem completely outside the spirit
of G-solutions to the paradoxes.

Fortunately, such a “level of languages” approach is completely unneces-
sary. The proper reply to the simple arguments, I think, is that for the reasons
discussed in the previous section, any intelligible 1-placed predicate of having
designated value is model-relative. Let’s stick to a predicate that relativizes
to a specific model: ‘is designated in the valuation based on My’. (It’s easy
to see that predicates like ‘is designated in all valuations based on models of
such and such sort’ and ‘is designated in some valuation based on a model of
such and such sort’ could only make things worse.) Now for these relativized
predicates, there is no paradox: they are already in the language L, they obey
excluded middle, they fail some of the assumptions used in the two arguments,
but that failure is in no way surprising or paradozical precisely because of the
relativized nature of the predicate. For example, suppose the model My is the
homophonic model whose domain consists of those objects of rank less than
the first inaccessible cardinal. Then ‘There are inaccessible cardinals’ is un-
designated relative to that model, even though it is (determinately) true; and
its negation is designated relative to that model, but (determinately) false. In
short, if ‘designated’ is interpreted as ‘designated relative to Mj’ then lots of
perfectly ordinary sentences (sentences of set theory, not containing ‘true’ or
other suspect terms) have precisely the “paradoxical” features of the sentence
that asserts its own lack of “Mj-designatedness”. There simply is no paradox
here.

Obviously the proponent of the simple revenge problem doesn’t intend ‘des-
ignated’ to be understood as model-relative. The question then arises, how is
it to be understood. I do not deny that it is possible to introduce into the
language an operator (which I prefer to call ‘determinately’) with many of the
features that the proponent of revenge wants, and which is not model-relative.
Indeed, I think that such predicates are already definable in L! I will discuss
this in the next section. But such predicates only breed paradox if they satisfy
all the assumptions used in the derivations above. It turns out that one can get
predicates that satisfy most of the assumptions used in the derivations above;
the one place they fail is that excluded middle cannot be assumed for them. So
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there is a revenge problem (of the sort considered in this section) only if there is
reason to think that we can understand a notion of “designatedness” that obeys
those other assumptions plus excluded middle.

And why assume that? I think what underlies the simple revenge problem
is the thought that the model-relative designatedness predicates all obey ex-
cluded middle, so there must be an absolute designatedness predicate that does
too. But this assumption seems to me completely unwarranted: one just can’t
assume that one can extrapolate in this way from the case of model-relative
predicates, which make sense only by virtue of “misinterpreting” the quantifiers
as having restricted range, to the unrelativized case where no such “misinter-
pretation” is in force. In the case of G-solutions, even the choice of value-space
depends on the initial restriction of domain; if one tries to idealize away the
restriction of domain, one is left without a choice of value space. How one is
supposed to be left with an intuitive understanding of an absolute notion of
designatedness (even one that can only be formulated in a richer language) is
beyond my comprehension.

Part Three: Determinacy and Iterated Determinacy

10. Determinacy and "Strengthened and Weakened Liar Sen-
tences". Once we assume a G-semantics, there is no danger that there are
any genuine paradoxes statable in the language L: any apparent paradox stat-
able in the language has a solution that is consistent with all instances of (T)
and (8). If there is a revenge worry, it is that the language is expressively weak,
and that there are concepts we need that if added to the language would breed
new paradoxes. For instance, the Liar sentence is clearly somehow “defective”,
but we’ve seen that we can’t explain its defectiveness as its being neither true
nor false; can we explain this in some other way? It’s natural to say that its
defectiveness consists of its being neither determinately true nor determinately
false. We can take ‘determinately’ to be an operator D taking formulas to for-
mulas; from that we can form predicates of determinate truth and determinate
falsity, viz., D[True(x)] and D[True(neg(x))] (and analogously, of determinate
satisfaction).

A worry is that if we add such a determinacy operator to the language (in a
way that allows us to say of the Liar sentence that it is neither determinately
true nor determinately false), we will inevitably be led to new paradoxes that
cannot be consistently treated. A weaker worry is that the motivations for
introducing a notion of determinacy will eventually lead to a hierarchy of richer
and richer languages. I will argue that both worries are unfounded.

We want to allow the operator D to apply to formulas that themselves con-
tain D. (This is a precondition to avoiding a hierarchy of languages.) The key
to avoiding paradox is that excluded middle won’t be assumed for claims of
determinate truth: we don’t want that every sentence is either determinately
true or not determinately true. (Analogously for determinate satisfaction.) Be-
cause of this and the fact that the semantics is given in classical logic, we can’t

29



straightforwardly define the notion of determinate truth in terms of the seman-
tics.

Instead, let’s impose some conditions that a reasonable determinacy operator
should satisfy. From a model theoretic viewpoint it seems quite reasonable to
assume that D is value-functional and satisfies the following:

(@) If [Alar,s < [Blwm,s then [DA[ys < [DBlps.

(b) If |Alapr,s = 1 then |DA|py,s =1

(cw) [DAM,s < Al

and probably the strengthened form of that

(c) If 0<|A|ar,s<1 then |DA|as<|A|a,s and if [A|pr,s = 0 then [DA|ps =0

(a), (b) and (c,) correspond to natural inferential principles: (a) to the principle
A— BE DA — DB, (b) to AE DA, and (c,,) to F DA — A. The inferential
content of the remainder of (c) is that A — DA F AV —A. (The converse
inference AV A F A — DA follows from (b).)3!

Conditions (a), (b) and (c,,) are clearly insufficient for counting as a deter-
minacy operator, for they are compatible with D being the identity operator.
(c) partially rectifies that, but is insufficient to guarantee that we can legiti-
mately declare the Liar sentence @) to be not determinately true (or indeed,
to guarantee that we can declare -DA for any A for which we cannot declare
—A). Model theoretically, what we need is that DQ have value 0. For that, the
following is sufficient (and in most versions of G-semantics, also necessary):

(d) If |Alam,s < |-Aln,s then |DA|ps =0,

which corresponds to the "modified reductio principle" 4 — —A E ~DA.3?
If one takes the model theory sufficiently seriously one may want to replace

(a)-(d) by a slightly stronger condition:

(e) There is an operator 0 on the space V. of values such that if |A|yrs is v,
|DA|n,s is Ov, and which satisfies analogues of (a)-(d). That is, which
satisfies

(0a) If v1 < vy then duy < Jvg

31Tt doesn’t follow that A — DA is fully equivalent to excluded middle, i.e. that |A — DA|
= |AV —A|, and in typical G-logics (e.g. those meeting condition (III;) of note 21) this can
fail: for instance, where @ is the Liar sentence, @ — D@ may have value 0, which can never
be the case for an instance of excluded middle.

32Qufficiency: Since |Q| = |-True({Q))| = |-Q|, (d) requires that |DQ| = 0. Necessity:
If |Als < |=A[s then |A]s < |A A —A[s. In every G-semantics I know of (e.g. that of [5]), we
have that for any A, |[AA -A|s < |Q|. Assuming that, the above yields that if |A|s < |2A]s
then |Als < |Q|. But then (a) yields that if |A|s < |-Als then |[DA|s < |DQ| = 0.
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(0b) 91 =1
(0c) 90 =0, and if 0<v<1, then dv<wv

(0d) If v < v* then dv = 0, where * is the operator that corresponds to
negation.

This is stronger, because V. might contain values that no sentence of the lan-
guage could possess; the most that follows from (a)-(d) is that a partial operator
0 defined on the subset of V. that is in the range of the assignment function
satisfies (a)-(d), but (e) adds that this operator is total. The stronger condi-
tion seems natural if not irresistible, and I have no objection to adding (e) as
a requirement. Call an operator D satisfying these conditions a determinacy
operator (and call the corresponding 0 satisfying (da)-(0d) a 9-operator). If
we require only (c,) in addition to (a), (b) and (d), D will be called a weak
determinacy operator; similarly, weakening (Oc) to

(0cy) Ov<vw

gives the requirements on a weak 9-operator.

Given a G-semantics for a language without a determinacy operator, can we
extend it to one with such an operator? We certainly can extend it to one with
a weak determinacy operator; and for all versions of G-semantics I know of, we
can extend it to a full determinacy operator. The simplest way to show this is
to explicitly define such an operator D from the connectives we already have in
the language. One particular such D (T'll call it D) can be defined as

AN (A= —A).33

Obviously it corresponds to an operator in the underlying space, viz. Jv =4
glb{v, (v = v*)*}. That the conditions (da), (Ob), (dc,) and (0d) are satisfied
is apparent: e.g. to verify (9d), we simply observe that if |[A]; < |-A|s then
|A — —Als =1, 80 |7(A— —A)|; =0, |JAA (A — —=A)|s = 0. And the full
(Oc) is satisfied in the versions of G-semantics I'm familiar with, e.g. that of [5].
I'm mostly interested in G-semantics in which full determinacy operators are
definable, but weak determinacy operators would in fact fit my main purposes,
and will rely below on the fact that they are definable in every G-semantics.

An advantage of treating the determinacy operator as defined within the
original language is that doing so settles the application of ‘True’ and ‘Satisfies’
to sentences containing this operator, and settles it in such a way that the
biconditionals (T) and (S) and the corresponding intersubstitutivity theses are
bound to hold even for sentences that involve the determinacy operator. Thus
with ‘determinately’ defined as D, it is immediate that there can be no new
paradoxes of determinacy.

33In [3] T used the alternative definition A A [T — A], where T is a logical truth; this is
equivalent to the definition in the text in the particular G-logic considered there, but I believe
that in G-logics for which the equivalence fails, the operator in the text is more useful.
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Two examples that might initially be thought paradoxical are the "strength-
ened Liar sentence" ()1 which directly or indirectly asserts that it is determi-
nately not true (and hence must be a fixed point of the "strong negation oper-
ator" D—), and the "weakened Liar sentence" 1 which directly or indirectly
asserts that it is not determinately true (and hence must be a fixed point of
the "weak negation operator" —D). Let’s focus on the latter. @ is equivalent
to =D[True({Q1))], and hence (by the Tarski biconditionals and substitutivity
principles) to “DQ1, so

(*) Q1 = [-DQx| (or equivalently, |=Q:1| = [DQ1]).

What can we say about the value of DQ1? First, |[DQ1| isn’t 0: for if it were,
then by (*), |@Q1] would be 1, and we’d have a gross violation of (b). Second,
|DQ1]| is strictly less than |Qq]: for since |DQ1| # 0, we have by condition (d)
that |Q1| £ |=Q1], so by (*) |Q1] £ [DQ1]; together with [DQ1| < |Q1] (condi-
tion (cy)), this yields |DQ1|<|Q1]|. So application of the operator corresponding
to D strictly lowers the value of @1, but doesn’t reduce it to 0.

We do have, though, that a double application of this operator reduces the
value to 0; that is, [ DDQ;| = 0 (from which it follows that it is not determinate
that Qy is not defective, i.e. —D—-[-DQ; A -D—Q1]**). The argument for
IDDQ:| = 0 is that by condition (c,), |DQ1| < |Q1]; so by (*), IDQ1| <
|[-D@Q1]; and [IDDQ;| = 0 then follows by condition (d). It follows, of course,
that DD (the result of applying D twice) is strictly stronger than D. (The same
conclusion would have emerged from studying the "strengthened Liar": the fact
that DD is strictly stronger than D shows up in the fact that |[D=Q_1| > 0 but
IDD-Q 4| =0.)

Notice that this argument doesn’t turn on the specific definition proposed
for D; it doesn’t even turn on the fact that D is definable in terms of the other
connectives. Rather, it turns only on the general features of a G-semantics plus
conditions (b), (¢,y) and (d); not only was (c) weakened to (¢, ), but (a) wasn’t
used. Indeed, we didn’t even use the full strength of (b), we only used

(by) If |A|ar,s = 1 then |[DA|ps > 0,

(whose inferential analog is A,~"DAF L, where L is an absurdity). (by), (cw)
and (d) are the conditions for what I'll call a very weak determinately operator.
We see then that for any such operator in a language with a G-semantics, DD
is strictly stronger than D. Calling an operator D idempotent if DD is the same
as D, we get

Conclusion: No operator in a language with a G-semantics that
meets the conditions for being even a very weak determinately op-
erator can be idempotent.??

34For this simplifies to ~D[DQ1 V D-Q1], which by the nature of Qi is equivalent to
—D[DQ: V DDQ1], which by two successive applications of “DDQ; is valid.

We can’t assert that Q1 is defective (or, of course, that it isn’t); only that it is "possibly"
defective, i.e. not determinately non-defective.

35 Also, if D meets those conditions then D—D is strictly stronger than —D: for |D-~DQ1|
is |[DQ1]| and |=DQ1] is |Q1], and we’ve already seen that |[DQ1| < |Q1]-
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(It was implicit in our result on "truth-like operators" in Section 3 that no very
weak determinately operator in a G-semantics can be bivalent, i.e. can be such
that the value of any sentence of form DA is always 0 or 1; indeed, that result
doesn’t even require (d). It’s also worth noting that for any operator that meets
the full condition (c), idempotence immediately implies bivalence: (c¢) implies
that for any A, if |[DDA|s = |DA|s as it must by idempotence, then |DA|s can
only be 1 or 0. So (b,,) and the full (¢) immediately rule out idempotence in
any G-semantics.>%)

I must emphasize that these conclusions only apply to operators in languages
with a full-fledged G-semantics; that is, languages with a DMC-semantics for
which the Tarski biconditionals hold. Obviously if one gives up the latter as-
sumption, the conclusion no longer need hold. For instance, suppose we were
to stipulate that the original language is to be extended by the addition of an
operator D* which is stipulated to behave in the semantics as follows:

|D*A|ps is 0 if |Alpr,s<1, and |D*Alar,s is 1 if |Alars Is 1.
(D* is of course just the operator version of the alleged “absolute designateness”
predicate discussed in the previous section.) Such a D* is by stipulation biva-
lent, and is easily seen to satisfy all of the conditions (a)-(d); our conclusions
thus imply that adding it to the language would force a failure of the Tarski
biconditionals, which we knew already (from the discussion of attempts at a
model-theoretic revenge argument).

Might we contemplate settling for a determinacy operator that maintains
idempotence and the Tarski biconditionals by weakening one of the conditions
(bw), (cw) and (d)? One’s first inclination might be to weaken (d), but as
remarked in note 32, there is no way to do this in the best-known versions of
G-semantics without either weakening (a) or giving up the idea that |DQ| = 0,
either of which seems an intolerably high cost to pay. (And in every G-semantics,
keeping idempotence together with (b,,) would rule out acceptance of the full

(©).)

Another way to keep idempotence in a G-semantics would be to say that the
D operator has non-trivial application only to formulas that don’t themselves
contain D: the line would be that if A contains D, |DA|s = 0, so DD is the 0
operator and hence trivially idempotent.?” This would allow us to preserve (c)
and (d), and it generates a restriction on (b,,) that blocks the above proof (and
it generates a restriction on (a) as well): in particular, the various “determinate
Liar” sentences @, (« > 1) now all get value 1. But limiting the scope of the
determinacy operator in this way seems to me a very high cost. One could
ameliorate that cost by introducing a hierarchy of determinacy operators, e.g.

30Tn inferential form, (c) amounts to the law B — DB E BV B, which implies DB —
DDBE DBV —DB. Idempotence would establish the premise, so we’d get excluded middle
for D claims, which would suffice for inferential paradox.

370f course, this will have to affect the application of the D operator to some sentences
that don’t contain ‘D’ but contain ‘True’ or ‘Satisfies’, if the schemas (T) and (S) are to be
preserved.
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an operator Do that applies non-trivially to formulas containing the “ground
level” determinacy operator D; but Dy couldn’t be explained as DD since DD
would just be D. It seems to me that introducing such a hierarchy of operators
would throw away whatever virtues idempotence might be thought to have,
and that the idea of a hierarchy of primitive determinacy operators has far less
appeal than a hierarchy obtained by iterating a single determinacy operator.

The fact that the G-semantics rules out the existence of an idempotent
operator satisfying the conditions of a determinacy operator (or even a wvery
weak determinacy operator) would lead to a revenge problem if we had reason to
believe that such an operator was intelligible: it would show a serious expressive
limitation in any such language. But I maintain that there is no good reason
to think that idempotent determinacy operators, or even idempotent very weak
determinacy operators, are intelligible. I've already considered one argument for
the intelligibility of the particular idempotent operator D*, and argued that this
argument rests on a misunderstanding of the significance of the model theory.
But the possibility that there are more sophisticated arguments for idempotence
remains to be considered.

11. Iterations of Determinacy Operators. The impossibility of idem-
potent operators in a G-semantics is a more stringent ban that might at first
appear. To see this, observe that if D is any determinacy operator then so
is DD (the result of applying it twice); that is, DD satisfies (a)-(d) if D does.
Similarly, if D is any weak determinacy operator then so is DD. (Not so for very
weak.) Because of this, our conclusion that if D is a weak determinacy operator
in a G-semantics then it can’t be idempotent can be extended: not only can’t
D be idempotent, DD can’t either. That is, DD can’t be identical to DD D D;
from which it easily follows that it can’t be identical to DDD. Continuing in
this vein, we can argue that as n increases, the result D" of applying D n times
becomes strictly stronger as n increases.

We can also extend the iteration process a good way into the transfinite, as
I will discuss in detail in Part Four. The basic idea, restricted for simplicity to
the case where A is a sentence, is that for each limit ordinal A\ for which the
iteration is defined, D*A says that for all a<\, DA is true; as a result,

|DAA| is the greatest lower bound of {|D*A| | a<A}.
More generally, we can get that even when A can contain free variables,
(LIM) |D* A, is the greatest lower bound of {|DA|, | a<A}.

It’s then easy to verify that as long as the iteration process is defined in accor-
dance with (LIM) at each stage, it always leads from determinacy operators to
determinacy operators and from weak determinacy operators to weak determi-
nacy operators. So the anti-idempotence result shows that we get a hierarchy
of operators that become strictly stronger for as long as the iteration
is satisfactorily definable (i.e., definable in a way that accords with (LIM)).
The limits on how far it is so definable raise interesting philosophical issues
which I will discuss in Part Four.

34



This fact that the hierarchy never collapses to idempotence can be directly
checked, by producing a hierarchy of “increasingly paradoxical” sentences. The
simplest such hierarchies are the transfinite Liar hierarchies. There are two
of them, "going in opposite directions"; I will focus on the fixed points @, of
the "increasingly weak negations" —, =D,—~DD, ..., but I could just as well have
used the fixed points Q)_,, of the "increasingly strong negations" —, D—, DD—,
....3% So: Suppose we have defined D® for some ordinal o. Then we can find
an "a-level weakened Liar sentence" ), which says ~D*True({Qq)). By the
Tarski biconditionals and substitutivity principles (which by definition hold in
any G-semantics), it follows that
() 1Qal = [D*Qal-
|D*Q,| isn’t 0: for if it were, then by (**), |Q.| would be 1, and we can
easily see (using (b) and (LIM)) that then | D?@Q,| would have to be 1 for all o,
contradicting our assumption. However, |D*Q4| < |Qa| (by (cw)); so by (**)
|DQ,| < [mD%Q4l; so by (d), |[D*T1Q,| = 0. So D**! is a strictly stronger
operator than D® (from which it follows that it is not D**l-true that @, is
non-defective®?).

To summarize, the situation is that for a fixed @, the D?@Q, get stronger
and stronger as o increases, until o reaches « + 1; after that point no strength-
ening of the sentence by adding ‘determinately’ is possible, since the sentence
already has value 0. But there are other sentences, e.g. the Qg for f>a, for
which the iteration can proceed farther before collapsing to value 0; so the
operators D? mnever collapse to the operator D* or to any other idempotent
operator.

The claim that the determinacy operator D, and the corresponding operator
0 on the space of values, never collapses into idempotence may seem as if it
couldn’t be true: after all, for any partially ordered set V. there is a cardinal
d greater than the cardinality of all V,-chains (linearly ordered subsets of V7).
But then for any formula A and assignment function s, the chain {|D*A|,} has
stopped decreasing prior to the initial ordinal for d; so letting & be that initial
ordinal, it seems that D¢ must be idempotent.

The problem with this argument is that the iteration of the D operator
breaks down (becomes undefined) before reaching cardinality d. There are two
reasons why this is so.

The first reason for the breakdown depends on the nature of each value space
Ve (used for models of cardinality no greater than ¢). In order to ensure that
quantified formulas get values in the space, I required that V. be c-complete:
that is, each subset of V. of cardinality no greater than ¢ must contain a least

38Fach Q_ behaves very much like the negation of the corresponding Q.

39Indeed, for finite o, the ‘a+41’ can be replaced by ‘a’. The proof of the parenthetical claim
is a generalization of that in note 34: to say that it is not D7-true that Q4 is non-defective
is to say that "D —[-DQa A 7"D—=Q4], i.e. 7" D?[DQq V D—Q4], i.e. "D [DQa V DD*Q4].
This reduces to =D+ Q,, (using the fact that =D*t1Q,), and this is valid whenever 1+ &
> a+1;i.e. when 0 > a+ 1 and « is infinite, or 0 > « and « is finite.
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upper bound (or equivalently, each such subset must contain a greatest lower
bound).*” T also gave reasons (note 19) for expecting that the space would not
contain least upper bounds (or equivalently, greatest lower bounds) for all sets
of higher cardinality than c. But the only acceptable way to define 0* for a
limit ordinal A would be to let 9*(v) be the greatest lower bound of all 9%(v)
for a<A; so if A has cardinality greater than ¢, there is no reason to think
that 0 is defined.*! Indeed, the fact that we have shown all iterations of @
to be idempotent, together with the result of two paragraphs back that if 9¢
were defined it would be idempotent, shows that there must be subsets of V. of
cardinality no greater than that of £ that have no greatest lower bounds.

But there is a second reason for the breakdown in the iteration of the D-
operator, which occurs much earlier and is of more interest for generating re-
venge problems. It arises from the fact that the language L (like all languages,
in any but a special technical sense of ‘language’) can contain only countably
many expressions. From this it follows that there are countable « for which
there is no operator D® in the language; this is a much earlier breakdown in the
iteration process than the one required by the previous paragraph. This earlier
breakdown is a source of revenge worries, and in Part Four I will investigate in
detail how it occurs.

So for both of these reasons, the iteration process breaks down, and that is
how the claim that it never collapses to idempotence avoids absurdity. And to
repeat, it not only avoids absurdity, we have proved that it must hold given the
basic assumptions of G-semantics and the very weak conditions (b,,), (c,,) and
(d). Of course, one might hold on to idempotence and those weak conditions
(or their inferential versions), if one were to give up the conditions on a G-
semantics: for instance, if one were to give up the truth schema. But that has
high costs. The main goal of the rest of the paper is to argue that giving up on
idempotence does not have an intolerably high cost, and indeed is very natural.

12. Non-idempotent Determinacy versus Stratified Truth. One
might think that a hierarchy of non-idempotent iterations D% of a determinacy
operator D would give rise to all the problems of stratified theories of truth and
satisfaction in classical logic. But there are at least three reasons why this is
not so (of which I take the first and third to be most important).

The first is that determinacy is a much more peripheral notion than truth,
and we do have a unified notion of truth (and of satisfaction too). It is the
notions of truth and satisfaction, not of determinate truth, that we need to
use as devices of generalization. We’ve seen that stratifying the truth predicate

40The greatest lower bound of S is (U{v*|v € S})*, where * is the operator on V corre-
sponding to negation.

41Well, we could define 8*(v) as the greatest lower bound of all 8% (v) for a in a sequence
that is cofinal with X; but then if A has no cofinal sequence of cardinality less than or equal
to ¢, there is no reason to think that 8> is defined. And the first ordinal of cardinality greater
than ¢ has no cofinal sequence of cardinality less than or equal to ¢, so this liberalization takes
us no further.
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seriously cripples our ability to make generalizations; not so for a “stratification”
of the notion of determinacy.

The second point to make is that there is a serious disanalogy between the
stratification of truth in classical theories and the “stratification” of determinate
truth here. For in this theory, all the determinacy predicates are defined by
iterating a single determinacy operator (and using a truth predicate); whereas
in the case of classical stratified truth theories, each truth predicate must be
introduced separately.

The third point is that we can reasonably hope, for each «, that our over-
all theory of truth and satisfaction and determinacy is D“True. This is in
marked contrast to the classical truth theory case, according to which e.g.
‘True,((A)) — A’ is an important part of the theory but not true, (but only
truey+1). Thus the main objection that I raised against stratified theories (the
one with which T closed Section 2) simply doesn’t arise against the current
theory.

Despite these three points, it may seem counterintuitive to suppose that
there is no intelligible notion of a sentence being True and DTrue and D?*True
and ..., through all iterations of the determinately operator; and that is what
my account implies. Indeed it may seem not merely counterintuitive, it may
seem incompatible with point one, i.e. incompatible with the point that we can
use ‘True’ to make generalizations that one couldn’t make otherwise. These
two qualms are connected: one can’t fully remove the intuitive pull of the first
qualm without coming to understand why the second qualm is incorrect. And
showing that the second qualm is incorrect requires the more precise treatment
of the hierarchies that is to be given in Part Four. Even so, it is worth making
a preliminary remark about the second qualm, and then addressing the first.

The incompatibility qualm: As I have been discussing the determinacy oper-
ators so far, the ordinal superscript ‘@’ in ‘D®’ is not a variable; the intent has
been rather that for each ordinal « in a suitable segment of the ordinals, there is
a corresponding operator ‘D®’ in the language. But (1) it looks as if we will be
able to use the truth predicate to get the effect of quantifying over the «, even
if the superscript isn’t a variable. In particular, it looks as if we can express
such thoughts as that for each «, the result of prefixing A with the a!” iteration
of ‘D’ is true. But (2) that would be in effect just the application to A of an
operator "D*True for all «", and that looks like an idempotent operator that
is the infinite conjunction of all the D*True. I've argued against there being
such an operator in the language (and indeed will be arguing that there is no
good reason to suppose that such an operator is intelligible); so what gives?

The long answer to this question will be given in Part Four. The very short
answer is that we can indeed introduce a hierarchy of iterations D% of D for
variable «, and hence allow quantification over the «; however, in order to make
the quantification well-behaved we must impose a bound on the «, and there
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are compelling reasons why there can be no unique such choice of bound.*?> Any
bound we impose to keep the hierarchy of operators well-behaved can be relaxed,
so that there is no maximal good bound. Given any reasonable choice of bound
for a hierarchy of iterations D% of D, we can then use the truth predicate to
achieve what is in effect a quantification over the «, just as in the previous
paragraph; but since the « are bounded, this will simply be another iteration
of D in an enlarged hierarchy, so it does not achieve the intended effect.

The counterintuitiveness qualm is that it just seems as if we have a uni-
fied notion of hyper-determinate truth ("determinate truth in every reasonable
sense of that term”) corresponding to “T'rue and DTrue and D*True and ...”.
Or if you like, a unified notion of “defective in some reasonable sense of that
term”, viz. “(=True and —False) or (~DTrue and ~DFalse) or (~D?*True
and =D?False) or ...” 43

I don’t want to deny that we have these notions; but not every notion we have
is ultimately intelligible when examined closely. A large part of the response
to the counterintuitiveness qualm will be an argument, in Part Four, that the
notion of “the” hierarchy of iterations of D has a kind of inherent vagueness
that casts doubt on there being a well-behaved notion of “D<-true for every
«”; and without that there is no reason to suppose that there is a well-behaved
notion of “determinately true in every reasonable sense of that term”. The
apparent clarity of such notions is an illusion. (One can, to be sure, give 4ll-
behaved definitions, that would seem well-behaved if the inherent vagueness in
the hierarchy were not taken account of; so part of the response to the qualm
will be to show how without faulty assumptions those definitions are indeed
ill-behaved.)

A unified notion of hyperdeterminate truth, then, is basically something we
should abandon. For this recommendation to be acceptable, following it had
better not have the high intuitive costs that stratified truth theories have. And
it doesn’t. In addition to the three points made earlier in this section, I note
the following. A substantial part of the counterintuitiveness of stratified truth
theories stems from the fact that if such a theory were actually in use, each
person would be under constant pressure to employ very high ordinal subscripts
in order to ensure that what they said had sufficient strength; and because
of ignorance about the subscripts employed by others whose views we are dis-
cussing, we would often end up employing too low a subscript to capture what
we wanted to say. This is a point well illustrated by Kripke’s discussion of Nixon

42 A slightly longer answer is that we can introduce a hierarchy of pseudo-iterations D of D
for variable o, which we can quantify over unrestrictedly; but for large o these can’t be viewed
as genuine iterations of D, nor will they be determinacy operators in any reasonable sense;
and there is no satisfactory way to restrict to "good" ordinals (for which the D behaves as
it is supposed to) except by restricting too far. (A still longer answer involves the idea that
the notion of a "good iteration" is a "fuzzy notion" for which classical laws fail; this is why it
is impossible to achieve satisfactory results by quantifying over only the good iterations.)

4301 alternatively, as “either defective or ~D—defective or ~D?—defective or ...”, where
‘defective’ means ‘neither determinately true nor determinately false’. In some G-logics this
is a slightly stronger predicate than the one in the text.
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and Dean (mentioned at the end of Section 2); one of the symptoms is that if
Nixon says “Everything Dean says is untrue,” and Dean says the correspond-
ing thing about Nixon but with a possibly different subscript, then at least one
of them fails to include the other’s remark within the scope of his own. The
situation with iterations of the determinacy operator is quite different: e.g. if
Nixon says “Everything Dean says is D® not true”,** and Dean says the corre-
sponding thing about Nixon, then both succeed in disagreeing with the other’s
remark even though they have used the same ordinal . Because of this, there
is little pressure to employ high ordinal superscripts on determinacy operators
in normal contexts. And because of that, it is difficult to find circumstances
where it is plausible to maintain that we should have reason to think that a
person’s theory is "defective in some sense of that term" without there being a
sufficiently high a—say €, or the first non-recursive ordinal, or even higher—
for which the operator D¢ is perfectly clear and for which we are in a position
to think the theory to be not D*T'rue.

Part Four: Transcending the Hierarchies?

13. A New Revenge Worry, in Three Strengths. Part Four will
in effect be concerned with the question (raised in the last section) of why we
can’t use the truth predicate to "unify" the various iterations of the determinacy
operator. This is closely related to a revenge worry: for if we could use the truth
predicate to "unify" the various iterations of the determinacy operator to get
a "hyperdeterminately" operator Dj,,, then it looks as if we could use that
unified operator to produce a new "Hyper-Liar" paradox (via a sentence that
asserts its own lack of hyper-determinate truth). Such a paradox couldn’t be
handled along the lines used for the paradoxes in the hierarchy {Q,}, since that
solution depends on non-idempotence; and perhaps it couldn’t be consistently
handled at all without giving up the truth and satisfaction schemas. Of course,
from known consistency results, there can’t be a "unification" in the language
that has this last feature; but it is prima facie puzzling why we can’t use the
truth predicate to create one.

But the concern in Part Four will not be only with the idea of hyper-
determinately operators that are definable in the language; the real worry is
that the hierarchy of determinately operators used in working out a G-solution
can be used to make such a hyper-determinately operator intelligible. We may
not be able to define such an operator in the language, because of certain ex-
pressive limitations of the language; but the idea is that we can transcend these
limitations in the mind ("mentally quantifying" over the levels of the hierarchy),
and then contemplate adding such an operator to the language. The strong re-
venge worry is that adding such an operator to the language would produce

447 focus on the case of ‘D™ not true’ rather than ‘not D® true’ to maintain the parallel
with ‘not true,’ in the stratified truth theory. If a<f, ‘trueg’ is weaker than ‘true,’ but ‘DB’
is stronger than ‘D®’; so ‘not true,’ gets stronger as « increases, whereas ‘not D%’ would get
weaker. (However, the immediate claim in the text would hold just as well for ‘not D% true’.)
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a new paradox that requires giving up the truth schema. Substantiating this
would be a fatal blow to any claim that a G-solution adequately resolves all the
paradoxes.

There are weaker revenge worries also based on the idea that we can use the
hierarchy of determinately operators to make intelligible some sort of hyper-
determinately operator. The intermediate-strength revenge worry is that
such an operator can’t be made consistent with the truth schema in the semantic
framework so far introduced, that is, in a G-semantics. If that were right it would
mean that if we were to expand the language to include these new concepts, we
would get new paradoxes that can’t be resolved by the same sort of means by
which paradoxes were resolved in the language L that has been treated (though
they might be resolved by other means). That too would undermine any claim
that G-solutions offer an ultimate answer to the paradoxes. The natural way
to try to argue for the intermediate-strength revenge worry is to argue that
we can make intelligible an operator that is both idempotent and satisfies the
inferential versions of the conditions on being a very weak determinacy operator
(see Section 10); for we’ve already seen that such an operator couldn’t possibly
be treated within a G-semantics.

The weak revenge worry—so weak that maybe it shouldn’t count as a
revenge worry at all—is that we can use the hierarchy of determinately operators
to make intelligible some sort of hyper-determinately operator not definable in
the original language, which breeds new prima facie paradoxes. It is not claimed
that these new paradoxes aren’t resolvable in a G-semantics—that would be the
intermediate-strength worry. So it wouldn’t really undermine the claim that
we need nothing more than G-semantics to resolve the paradoxes. Still, if the
weak worry could be substantiated it would show that we couldn’t make do with
a G-semantics for a single language: a G-solution for a single language would
generate a richer language that needs its own G-solution, and so forth. That
wouldn’t defeat the basic idea of G-solutions, but it would be a disappointment.
It would show that one of the disadvantages of classical stratified truth theories
carries over to G-solutions. (G-solutions would however still retain the first and
third advantages discussed in the previous section; indeed, it is arguable that
even the second would not be totally undermined.*?)

As T've noted, the only obvious way to try to argue for the intermediate-
strength worry is to argue for the intelligibility of an idempotent determinacy
operator (or at least, an idempotent "very weak determinacy operator"). For
the weak revenge worry, this is not so: we could substantiate it by quantifying
over all iterations of D that are expressible in the language L, and there’s no
obvious reason why the result of so doing should be idempotent. If it isn’t
idempotent, then in an expanded language L* that includes it, we’d get a new
hierarchy obtained by iterating Dy,,; that’s how a G-semantics for L* might

45Part of the reason is implicit in the point made at the very end of the previous section:
there is normally little practical need to ascend very high in the iterations of D, in strong
contrast to the case of stratified classical theories.
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be possible (and hence why a substantiation of the weak worry would only be a
relatively minor blow to G-solutions).

The prima facie case for a Dy, operator being idempotent (and thus sup-
porting at least the intermediate-strength worry) seems slight:

(i) We would get idempotence from the assumption that hyper-determinacy
claims obey excluded middle (together with conditions (b,,) and (c,,) of Sec-
tion 10). But it isn’t evident how excluded middle for hyper-determinacy claims
could be argued, short of either the assumption that excluded middle holds gen-
erally (which would of course rule out G-solutions from the start, independent
of revenge worries) or the assumption that we can read a hyper-determinacy
claim off the model theory (an assumption that I hope to have disposed of in
section 9).

(ii) We could plausibly get idempotence from the assumption that a hyper-
determinacy predicate would unify all iterations of D, even those not expressible
in the language L. In particular, suppose that one of the "iterations of D" in-
cluded in the "unification" would be "hyper-determinately hyper-determinately";
then "hyper-determinately" would have the full-strength of "hyper-determinately
hyper-determinately", and so (assuming condition (c,,) of Section 10) "hyper-
determinately" would be idempotent. But there seems little basis for the thought
that we can define a hyper-determinateness operator that unifies even those it-
erations of D not expressible in the language L. (Perhaps we could get such an
argument from the assumption that ‘is an iteration of D’ is a bivalent predicate;
but we’ll see that that assumption is wholly unwarranted.)

I might add that even if there were an idempotent hyper-determinacy op-
erator, that wouldn’t seem to support the strong revenge worry: presumably
one could avoid paradox in various ways that are consistent with keeping the
truth schema, e.g. by denying the iterability of the operator or by in some other
way restricting the inference from A to Dp,,A. Admittedly, such solutions
are unattractive; and my view is that the rationale for a G-solution would be
thoroughly undermined if it could be argued that an idempotent determinacy
operator is intelligible.

As I've said, my goal is in fact stronger: I will argue that there is no basis
for even the weak form of the worry; from which it follows of course that there
is no basis for the intermediate or strong forms. But a word of clarification is in
order. It is certainly not part of my claim that it is incoherent to imagine that the
language L be expanded in non-definitional ways. There is always a possibility
of introducing new concepts; this is certainly the case for concepts pertaining
to new forms of society or new organisms or newly discovered particles, and
I see no reason to doubt that it is so for new mathematical concepts as well.
And it may well be that adding new mathematical concepts to the language
could make further iterations of the determinacy operator expressible in the
language, and consequently would lead to an extension of the G-solution to the
enriched language. (There would be a completely mechanical way of making
the extension.) I take it that that wouldn’t count as any kind of problem for a
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solution to the paradoxes, and so I'm understanding the "weak revenge worry"
to require more than this. What it requires to substantiate the weak revenge
worry is that simply by reflecting on the hierarchy of determinacy operators
we can make intelligible an operator that transcends them; it is that, and not
merely that we might make this intelligible in some other way, that seems to
generate "levels of language" in some objectionable sense. This is vague—the
weak form of the revenge worry just is vague.*® But I think that what follows
will undermine the worry, and in the process undermine the intermediate and
strong worries too.

14. Hierarchies of Operators: Introductory Remarks. In order to
properly discuss this, we need to be much clearer about transfinite hierarchies
of iterations of a determinacy operator.

Any iteration D® of D will be a syntactic operator that takes any L-formula
A to an L-formula D*A with the same free variables.*” For any formula A, we
can take DA to just be A; that is, we can take D° to simply be the identity
operator on L-formulas. If we’ve defined the operator D%, then we can define
the operator D®*!: for any formula A, the result of applying D**! to A is to
be the result of applying D to the result of applying D* to A.

So the only issue in specifying the hierarchy of iterations of D is specifying
D* for limit A. Of course, we want to do this in such a way that for any formula
A, D*A is in effect the infinite conjunction of the D*A for a<\. There will be
a limitation on how far we can do this, so let us say that we want it for all limit
ordinals A less than a certain limit ordinal o; ¢ will then be called the length of
the hierarchy.

More precisely, let O P be the set of operations on formulas of L that assign to
each formula another formula with the same free variables; and for any O € OP,
let det(O) be the operation that takes each formula x into the result of applying
D to Oz.

Definition: A hierarchy (of iterations of D) is a function H from
{a | a < oy} to OP, for some limit ordinal oy, that meets the
following conditions:

46The intermediate and strong forms can be freed of similar vagueness, for they can be
taken to involve intelligible expansions of the language however achieved.

4"Each D is a recursive operator, since once its application to a specific formula such as
‘0 = O’ is specified, there is a mechanical procedure for turning that into a specification of
its application to any other formula A. (The mechanical procedure is intuitively a kind of
"generalized substitution": it involves not only substituting A for appropriate occurrences
of ‘0 = 0’, but also substituting the standard name of A for appropriate occurrences of the
standard name of ‘O = 0’, the standard name of the standard name of A for appropriate
occurrences of the standard name of the standard name of ‘0 = 0’, and so on.) Since each
such operator is recursive, it is definable in the ‘true’-free fragment Lg of L. (The word ‘true’
will occur in sentences that are mentioned in the definitions of D* for limit X, but that is just
syntax and doesn’t prevent the definition being in Lg.) Of course, the fact that each specific
D% is definable in Lo doesn’t show that the whole hierarchy of them is; and the hierarchies I
will focus on will turn out to be far too large to be definable in Lg.
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RCZ H(0) is the identity operator;
RCS For any a<o, H(a+ 1) is det(H(«)).

RCL For any limit ordinal A<o g, H()) is a member of OP such that for any
L-formula x and any assignment s of objects to the free variables of z, s
satisfies [H(\)](z) if and only if for all 8 < A, s satisfies [H(B)](z).

I will call these the Reasonability Conditions for the behavior of a hierarchy on
zero, successors, and limits respectively. The condition (LIM) of Section 10 was
just the model-theoretic analog of (RCL).

A minor complication here is that RCL uses ‘satisfies’ in a way slightly
differently from the way used so far: it speaks of satisfaction of formulas with
arbitrarily many free variables by assignments of objects to the free variables,
whereas I have taken satisfaction to be of formulas with a single free variable by
objects. There is nothing deep here: by a slight extension of the ideas in note 4,
the use of ‘satisfies’ employed in (RCL) could be defined from my official one.
(I spare you the details.)

Of course, ‘satisfies’ in this modified sense is still a non-classical notion:
excluded middle cannot be assumed to hold generally for it. This gives the
condition (RCL) a rather different character than conditions (RCZ) and (RCS).
And it raises a point which will turn out to have major significance: we have
no obvious reason to think that ‘is a hierarchy’ is a predicate that
obeys excluded middle. Indeed, we’ll see that the supposition that it obeys
excluded middle leads to contradictions. However, we’ll also see that we can
define more restrictive notions of hierarchy for which excluded middle can be
assumed.

Although this definition allows for a multiplicity of hierarchies (not only
hierarchies of different lengths, but also different ones of the same length), it is
roughly the case that different hierarchies of the same length are "equivalent",
and that those generated by paths of different lengths are "compatible". More
precisely, call two operators O; and Oy on L-formulas equivalent if for every L-
formula A and every assignment function s, s satisfies O A iff it satisfies O5 A.
Call two hierarchies H; and Hy compatible if for every ordinal « in the domain
of both, Hy(«) is equivalent to Ha(«). (And call two hierarchies equivalent if
they are compatible and have the same length.) Then we have the following:

Equivalence Theorem: H; and H, are hierarchies F H; is com-
patible with Hs.

Note that I have not stated this as a conditional, and can’t do so in general
because of the problem with excluded middle. (It is easy to see that in G-
logics, —-introduction is only valid on the assumption of excluded middle for
the premise.)*® The equivalence claim in the first sentence of this paragraph

48 A1l of the premises, if there are side formulas.
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did state it as a conditional, which is why I emphasized that it was only a rough
approximation to the truth.

Proof of Equivalence Theorem: an obvious induction, but it is worth
spelling out to ensure that no fallacious use is made of excluded middle. So,
assume that H; and Hs are hierarchies, A is any formula, and s is any assign-
ment function. We need that for all & < min{on,,on,}, s satisfies [Hq(a)]A
if and only if it satisfies [Ha(«)]A. By the transfinite induction rule, which is
valid even for non-classical predicates (see end of Section 5), it suffices to show
that for any o < min{on,,om,},

(VB < «)(s satisfies [H1(8)]A if and only if s satisfies [H2(8)]A4) — s
satisfies [Hy(a)]A if and only if s satisfies [Ha ()] A.

Given the supposition that H; and Hs are hierarchies, the conclusion is evident
when « is 0 or a successor. For limit A\, the supposition that they are hierarchies
gives that for any o < min{op,,om,},

[s satisfies [Hy ()] A if and only if (V8 < «)(s satisfies [H1(8)]A)|A[s
satisfies [Hz(a)]A if and only if (V5 < «)(s satisfies [Ha(8)]A)],

which yields the desired conclusion via the inference (X; < Y1) A (X2 < Y2) E
(Y1 < Y3) — (X7 < Xa), which is easily seen to hold in all G-logics by several
applications of Condition (IT) from Section 10. B

A crucial question is, how far can we get hierarchies to extend? It’s easy
enough to satisfy the instances of (RCL) when X is sufficiently simple: e.g.,
when )\ is w. When A is a formula with a single free variable ‘v’, we could let
D¥ A be the formula

For all n, v satisfies every formula that results by prefixing (A) with n
occurrences of D.

This has the same free variable that A does. In addition to its occurring freely,
a formula that contains it is mentioned, but this is unproblematic. (And we can
remove the restriction to formulas with only ‘v’ free: e.g. let DY A be

For all n, every formula that results by prefixing (A) with n occur-
rences of D is satisfied by every assignment s of v;; to (v;;) and ...
and v;, to (vg,);

where these are the free variables of A.)

So specifying D¥ is easy; but as the limit ordinal A becomes more compli-
cated, specifying D* becomes more difficult. Indeed it can’t be done at all when
A is sufficiently large, for instance, when A isn’t definable in L or when any of
its predecessors isn’t definable in L.

Moreover, when it can be done, there will often be significantly different ways
to do it, corresponding to different ways that A and its predecessors might be
defined. In particular, we might define A as the supremum of a certain sequence
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S of ordinals; and then we might be able to take D*A as saying roughly that for
all ordinals « in S, the result of prefixing an appropriate operator D® to A is
true (or true of v, if A contains ‘v’ free). But if there is one sequence with A as its
supremum there will be many, so the precise choice of the operator D* will not
be unique. And the non-uniqueness increases as A increases, because then many
of the D® from which D* is defined will themselves not be unique. In short, a
specification of D that takes the form suggested will depend on a whole path
p of definitions of limit ordinals. Indeed, we’ll see that it is possible to define a
function ® that, roughly speaking, "takes paths to hierarchies": given that p is
a path of definitions of limit ordinals, ®(p) will be a hierarchy. I’ll sometimes
call it D, to emphasize that it is a path-dependent hierarchy of iterations of
D. (Tl also use the notation D,* as a suggestive abbreviation for [®(p)](«).)
(I will give a more rigorous treatment of paths and path-dependent hierarchies
in ensuing sections.)

There are many paths of a given length if there are any at all, and the
hierarchies generated by distinct paths are distinct. It would be possible to live
with this high degree of non-uniqueness of the hierarchies, given the equivalence
theorem. But it is more convenient to restore as much uniqueness as we can.
An obvious idea for doing so is to existentially quantify over the paths, i.e. to
let D*A be defined as something like ‘Ip[Path(p) A (D,*A) is true]’. We'll see
that as long as we put certain bounds on the length of the paths, or equivalently
on the ordinal «, it is possible to fully restore uniqueness by such a route. But
when we lift those bounds, uniqueness can’t be fully restored without making
the definition virtually worthless, and this is crucial to the dissolution of revenge
problems.

15. “Small” Hierarchies. I'll eventually want to consider hierarchies of
iterations of D that extend "as far as possible" through the ordinals.*® But the
fact that the notion of a hierarchy cannot be assumed to obey excluded middle
will complicate the discussion, and so in this section and the next I will give a
“warm-up” that restricts to "small" hierarchies in which this problem does not
arise. More specifically, let L be some fixed fragment of L for which we know
excluded middle to hold. (It might for instance be the ‘true’-free fragment Lo,
or the fragment L, consisting of sentences in which ‘true’ occurs only in the
context ‘true and a sentence of Ly’.) Let Ar be the first ordinal that is not
definable in Li. The path-dependent hierarchies to be discussed early in this
section can have lengths up to and including Ag, and by the end of the section
I will have unified them into a single path-independent hierarchy of length Agy.
Even when the fragment of L under consideration is Lg, the hierarchies to be
considered are thus very much larger than those considered in [3]: in that paper
I imposed very stringent requirements on the hierarchies, which entailed that
their length had to be a recursive ordinal. I can now see no good motivation for
those stringent requirements.

49In the same sense that someone might want to be "as rich as possible", even if he didn’t
think a state of "maximal richness" made sense.
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Let o be any limit ordinal no greater than Ag, i.e. any limit ordinal all of
whose predecessors are Li-definable. In particular, every limit ordinal less than
o is Lp-definable. (The latter claim is really no weaker than the former, since
there is an obvious way of obtaining a definition of a successor ordinal from a
definition of the largest limit ordinal that precedes it.) So there is a function
p—many of them in fact—that assigns to each limit ordinal X less than o some
L p-definition of it, i.e. some Lp-formula (with exactly one free variable) that
is satisfied by A and by nothing else. Call any such function p an Lg-path of
length o. Note that o is determined by p: given any Lg-path p, its "length"
(in my slightly nonstandard sense) must be the first limit ordinal for which p is
undefined, which I'll call o,,. Also, note that ‘Lg-path’ involves the notion of
L g-definability and hence is not a term of Lr. But it is a term of the fragment
L~ that results from Ly by allowing true’ to occur in the context ‘true and a
sentence of Lg’; and excluded middle must hold throughout this fragment given
that it does throughout Lg. So for any function p, either it is an Lg-path or it
isn’t.

To repeat, for any limit ordinal o up to and including Ag, there are L zp-paths
p whose length is ¢; and obviously this is not so for any o > Ag.

I now state a special case of a theorem proved in an Appendix to the paper.
Let o be any countable limit ordinal, let Pred(c) be the set of its predecessors,
and Pred)iy (o) be the set of limit ordinals that precede it. Let P, be the set
of functions from Pred)y, (o) to formulas with a single free variable ‘i’ (which
we can think of as a variable restricted to countable limit ordinals), and let P
be the union of the P, for all countable o. (P is thus an Ly-definable set to
which we expect all Lg-paths to belong, whatever the fragment Lg.) Let OP
be the set of operations on L-formulas, and let J be the set of functions from
initial segments of the countable ordinals to OP. (J is thus an Lg-definable set
to which we expect all hierarchies to belong.) Then:

Theorem on Existence of Small Hierarchies: There is an Lg-
definable function ® : P — J such that for every Lg-path p, ®(p)
(aka D,) is a hierarchy of length o,,.

Since we have just seen that there are Lg-paths of any limit length up to and
including A\r, we have:

Corollary: There are path-dependent hierarchies of any length up
to and including Ag.

Let an Lp-hierarchy be a hierarchy of form ®(p) for p an Lg-path. An
obvious but important fact about the notion of an Lg-hierarchy (for a specific
Lr within which excluded middle holds) is that it obeys excluded middle: any
function either is an Lg-hierarchy or isn’t one. The theory of Lp-hierarchies
can thus by developed without attending to the subtleties caused by possible
failures of excluded middle. Note that an L -hierarchy needn’t be definable in
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Lg. Indeed, it needn’t be definable even in the full language L, and it won’t be
if p itself is undefinable in L. One issue of some interest (though it won’t be a
central concern here) is: for which o are there Lg-definable hierarchies of length
o. It is immediate that for a hierarchy (or a path) to be Lg-definable, its length
o must be strictly less than \g: for Ag is by definition undefinable in Lg, but
if a hierarchy (or a path) is Lr-definable then so is its length. It can easily be
shown that there is no maximal length for L z-definable hierarchies, indeed, each
L g-definable hierarchy has an Lg-definable proper extension.’® I don’t know if
there are Lg-definable hierarchies on arbitrarily large proper initial segments of
Pred(Ar), but even in the case of Ly we have Ly-definable hierarchies extending
well into the non-recursive ordinals.”!

Even though specific Lg-hierarchies needn’t be definable in the full L, we
can nonetheless quantify over all of them (including the undefinable ones) in
the "successor fragment" Lp+. For sake of simplicity, I will define a hierarchy
of operators that apply only to ‘v’-formulas (formulas whose sole free variable
is ‘v’); this can be extended to a hierarchy of operators on arbitrary formulas
by the route illustrated for D“ in the previous section.

Definition of Path-Independent Hierarchy of Length A\p: If
A'is any ‘v’-formula, let Dfj A be the formula (whose free variables

are ‘e’ and ‘v’)

Ip(p is an Lr-path A o < o), A the result of applying [®(p)](«)
to (A) is true of v).

(We could restrict the quantification to paths of length Ar without affecting the
result.) Since there are no Li-paths of length greater than Ag, DﬁR]A is false
of everything if & > Ar. Consequently, Dz, ) has useful application only when
a < Ag; after this, it fails to meet condition (RCL) on being a hierarchy. But
within this domain of useful application, Dy, ] behaves very nicely: for (i) using
the Equivalence Theorem in the strong conditional form (which is legitimate in

50Let H be an Lr-definable hierarchy. If its length is a successor vy + 1, extend it by adding
(y+1,det(H(y))). If its length is a limit ordinal A (which must be Lg-definable, since H is),
extend it by adding (X, Oj;), where O}, is the operator that assigns to each formula 2 whose
sole free variavle is ‘v’ the following formula:

what results from substituting the Lpg-definition of H and the standard name
of x into the blanks in “For all operators O in the range of , v satisfies the
result of applying O to _ _)”.

The definition of OF; really needs to be generalized to apply to arbitrary formulas, but one
way to do that was illustrated in the discussion of D% in the previous section and another
will be mentioned in the Appendix.

51For instance, let p be the function that assigns to the smallest non-recursive ordinal v
the formula ‘u is the smallest non-recursive ordinal’, and assigns to each recursive ordinal
the formula j(a)"‘is a Church-Kleene notation for p’, where j(«) is the numerically smallest
Church-Kleene notation for it (in O or some other universal system). Then p is Lo-definable
and is an Lo-path, with domain {& | @ < v + 1}. From this we could easily get Lo-paths
extending much farther, e.g. to the limit of v, v, v (and beyond).
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contexts like this where we have excluded middle for the antecedent), we have
that for each Lg-path p, the operator DF‘LR] is equivalent to Dy wherever the
latter is defined; and (ii) for each a < Ag there are Lg-paths for which it is
defined. So we have a single quite natural hierarchy that usefully extends all
the way up to Ag.

16. A Length-Independent Hierarchy? Revenge? So far I've been
holding the "effectively classical" fragment Lp fixed, and seeing what can be
done within it. But as I’ve noted, whenever we have a fragment Ly that we
know to be "effectively classical", we can enlarge it to a "successor fragment"
Lg~. The path-independent hierarchy Dz ,.; usefully extends further than
Dy does: it extends up to Ag«, which is strictly larger than Ag. In their
common domain of usefulness, i.e. when a < Ag, the operators D&R] and
D&R*] will not be identical, for the formulas Df‘LR*]A quantify over more paths.
But the operators are nonetheless equivalent (when oo < Ag): for any formula
A, D&R]A and D[O}JR*]A are true of exactly the same things. In other words, the
hierarchy {Dfy ;| @ < Ag+} is in effect a proper extension of the hierarchy
{Dirg) | @ < Ar} (though it doesn’t literally extend it since it assigns different
formulas at each infinite stage).”?

In short, though we have achieved a certain kind of path-independence, we
have not achieved length-independence: given any path-independent hierarchy
of the sort described in this section, we can convert it to a longer one. We have
a "hierarchy of path-independent hierarchies".

But isn’t there a way to produce a unique hierarchy by "unifying" the ones
we have? One might be tempted to argue as follows:

Consider the set S of all A for classical fragments Lg; there is a
smallest limit ordinal p such that p > Ag for all Ag in S. So for
each o < p, there are Ag € S for which @ < Ag; pick one, and let
D* be D&R]. This defines a hierarchy extending up to p which is
guaranteed to be well-behaved (since at each stage it is equivalent
to a well-behaved operator).

But this argument presupposes that it makes sense to speak of "the set of all
(effectively) classical fragments Lp" (or rather, "the set of all Ar for classical
fragments Lg"; but the latter makes sense only if the former does). But that
supposition is justified only if we can assume excluded middle for the predicate
‘is a classical fragment’. And the assumption of excluded middle here is both
prima facie unwarranted and demonstrably inconsistent.

It is prima facie unwarranted because to call a fragment effectively classical
is to say that for each formula A within it, excluded middle holds. But we know
from the end of Section 3 that we can’t assume excluded middle for claims of

52 Also, the two hierarchies don’t even assign equivalent operators to ordinals that are outside
the domain of useful application of one but inside the domain of useful application of the other.

48



form ‘A obeys excluded middle’: indeed, from excluded middle for ‘A obeys
excluded middle’ one can infer excluded middle for A (note 14). If we can’t
assume excluded middle for all claims A, why should we be able to assume it
for "Lg is a fragment all members of which obey excluded middle"?

But the key point is that it is actually inconsistent to assume excluded
middle for the predicate ‘is a classical fragment’. The reason for that is that
given that additional assumption the argument displayed above is valid, and
easily leads to the further conclusion that the "unified hierarchy" of length p
is itself effectively classical. But then we can extend the hierarchy past p, by
applying the Small Hierarchy-Existence Theorem to a path of length p. So
it would follow that there is an effectively classical hierarchy bigger than all
effectively classical hierarchies and so bigger than itself.

The fact that ‘effectively classical fragment’ is not a predicate for which
excluded middle can be assumed makes it difficult to find useful generalizations
of the form "For all effectively classical fragments ...". That is why in this
section I have avoided doing so. Rather, I began the section by noting that Lg
is clearly an effectively classical fragment, as are Ly, Lo, and so forth; indeed,
for each clear case Lg of such a fragment, its "successor fragment" Ly~ is one
too. That is enough to give the neverending "hierarchy of path-independent
hierarchies" that I have discussed.

Consequences for revenge? Suppose that we pick a particular path-
independent hierarchy in the "hierarchy of hierarchies"; say {Dir,) | @ < Ar}.
Are we faced with even a weak form of revenge problem? Obviously not: we have
defined Dy, for variable a, so we can easily "unify" the operators D% in
this hierarchy simply by defining Dy, ) A as

Va(a < Agp — D[LR]D‘A).
Dhyp(L5) is not a member of the hierarchy { Dz, 1% | & < Ar}, but it is definable
in L (and indeed, in Lg-), by the definition just given; indeed, it is just the A"
member of the proper "extension" of that hierarchy { Dz, ..1* | & < Ag-}. Since
Dpyp(Ly) is definable in L, the general consistency result applies to it: so we
have a guarantee that Dy, (1) does not lead to paradox.

The point of this discussion is simply to serve as a warm-up for the discussion
that follows of what can be done in the full L. Obviously the discussion so far
does nothing to dispel the worries of Section 13: it simply shows that it is
possible within the language to transcend the hierarchy of iterations D for
those « that are definable in a single demonstrably classical fragment of the
language. The results might even encourage the weak form of revenge worry: for
the discussion shows that we can intelligibly transcend a hierarchy of iterations
of Dip,® for a definable in Lg, but only by going to a higher language Lg-«;
which might suggest that we can intelligibly transcend a hierarchy of all those
iterations D of D that are definable in the full L, but only by going to a richer
language. That is the issue to which I now turn.
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17. General Hierarchies. What happens when we go from iterations D%
of D definable in a single classical fragment of L to iterations definable in the
full L? A crucial point will be that the question of which syntactic operators
on sentences count as iterations of D becomes "fuzzy": or put more precisely,
we cannot in general assume

(O is an iteration of D) V =(O is an iteration of D).
To see why this is so, let’s define ‘a® iteration of D’ as best we can for « larger
than those discussed in the previous section.

To this end, we generalize the notion of a path. Let an L-path be some
member p of P that assigns to each limit A less than o, some L-definition of it.
We know from Section 4 that the concept of an L-definition is "fuzzy", i.e. we
can’t in general assume excluded middle for claims of form ‘u is an L-definition
of v’; so there is no evident reason to assume it for formulas of form ‘p is an
L-path’. (Any L-path p is an ordinary function on Pred)iy (o) for some unique
o, and we can reason about such functions in normal ways; but the question of
which such functions count as L-paths is "fuzzy".) We can also generalize the
Hierarchy-Existence Theorem:

General Theorem on Existence of Hierarchies: There is an
Lo-definable®? function ® : P — J such that

pis an L-path F ®(p) (aka D)) is a hierarchy of length o).

(Again, the proof is deferred to the Appendix.)

But note that this theorem is a much weaker result than we had for the
more restricted sorts of paths discussed in the previous section: it doesn’t say
that (for every p) if p is an L-path then D, is a hierarchy extending up to o,.
The function ® "constructs" something from every p € P, but because it may
be "fuzzy" whether p is an L-path, it also may be "fuzzy" whether what’s been
constructed is a hierarchy of iterations of D. We can’t even say that if p is an
L-path then what we’ve constructed is such a hierarchy; all we can say is that
if we’re in a position to assert that p is an L-path then we’re in a position to
assert that what we’ve constructed is such a hierarchy.

‘We do have:

Corollary 1: Jp(p is an L-path of length o) E JH(H is a path-
dependent hierarchy of iterations of D with length o).

Proof: The previous theorem gives

p is an L-path of length o F D), is a hierarchy of D-iterations extending
up to o;

53The fact that ® is definable in a classical fragment of L is of little intrinsic interest, but is
essential to the proof: the proof employs an inductive definition that relies on the Replacement
Schema, which is suspect once we leave demonstrably classical fragments of L.
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existentially generalize over D, in the conclusion, then use 3-introduction on p.
|

But as with the previous theorem, we can’t infer that if all predecessors of o
are L-definable then there is a hierarchy of D-iterations extending up to o.

In addition, there is less of a connection than we might expect between the
premise of the corollary and the claim that all predecessors of o are L-definable.
Certainly if there is an L-path of length o, then all predecessors of o are L-
definable; but for the converse we are restricted to

Lemma: All predecessors of o are L-definable F There is an L-path
of length o.

Proof: The premise implies that (YA € Predim(o))(Jy)(y is an L-definition of
A); so by the "choice principle" mentioned at the end of Section 5 (and valid

even for predicates not assumed classical), there is a function p with domain
Predjiy (o) such that (VA € Predyin(0))(p()) is an L-definition of ). W

Call an ordinal almost hereditarily L-definable if all its predecessors are
definable in L. (Note that ordinals that are (fully) hereditarily definable count
as almost hereditarily definable as well.) Then

Corollary 2:

(Negative Part) If o is not almost hereditarily L-definable then there
are no path-dependent hierarchies of iterations of D with length o.

(Positive Part) o is almost hereditarily L-definable F there are path-
dependent hierarchies of iterations of D with length o.

Proof: The Positive Part comes from the Lemma and Corollary 1, and the
negative part is immediate. l

We can also define a path-independent "hierarchy" D in complete anal-
ogy to how we defined the various Dy, ,|%; we’ll see, though, that it is much less
tractable. (Again I restrict the definition to ‘v’-formulas, for simplicity.)

Definition of General Path-Independent "Hierarchy": If A
is any ‘v’-formula, let Di7;*A be the formula (whose free variables
are ‘e’ and ‘v’)

Ip(p is an L-path A a < o, A the result of applying [®(p)](c)
to (A) is true of v).

This defines the "hierarchy" for arbitrary c, but as with the hierarchies Dy, ,;* of
the previous section, there comes a point when it becomes ill-behaved: indeed,
it eventually becomes trivial, in that for every sufficiently large o, Dip;*4 is
false of everything, for every formula A. What makes the situation much worse
in this case is that we can say very little about where the breakdown occurs;
indeed, this will turn out to be a "fuzzy" question.

We do have the following:
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General Path-Independent Hierarchy Theorem:

Negative Part: If ) is a limit ordinal that is not definable in L,
then for any o > A, D¢ is trivial. Consequently, if o is not almost
hereditarily L-definable, then D | Pred(o) fails (very badly!) to
be a genuine hierarchy of iterations of D (or to be a genuine hierarchy
of reasonable candidates for determinacy operators).

Positive Part: o is almost hereditarily L-definable = Dz | Pred(o)
is a genuine hierarchy of iterations of D.

(The proof of both parts is almost immediate from Corollary 2.) Note that since
there are countable ordinals with undefinable predecessors, the negative part
of this theorem implies that D|z; becomes very badly behaved in the countable
ordinals. And the positive part, being in rule form rather than conditional form,
is not enough to allow us to conclude that Dz satisfies (RCL) up to any ordinal
all predecessors of which are L-definable. For in order to universally generalize,
you need a conditional to universally generalize on, and the theorem above does
not license the strengthening to conditional form. The best we have is this: for
each limit o that we are in a position to assume has only L-definable
predecessors, we can take Dy [ Pred(c) to be a genuine hierarchy of
iterations of D. Once you prove that a given limit o has only L-definable
predecessors, the above results converts the proof into a demonstration that
Dy | Pred(o) is an adequate hierarchy.

18. Maximal Hierarchies? A question of great interest to revenge worries
is whether there is a mazimal hierarchy of iterations of D, that is, a o for
which Dyz) | Pred(c) is adequate as a hierarchy (i.e. satisfies (RCL)) but
Dyp) | Pred(o +w) isn’t. T will give a proof of the following "negative" answer:

Anti-Maximality Theorem: The assumption of such a maximal
hierarchy of iterations of D is inconsistent.

In the course of this I will also establish the less interesting claim

Lemma for Anti-Maximality Theorem: The assumption of a
maximal L-definable hierarchy of iterations of D is inconsistent.

I take the Lemma to have little intrinsic interest to the revenge problem: the
proponent of revenge is sure to argue that the concepts that give rise to revenge
problems aren’t definable in the language. But the Anti-Maximality Theorem
goes against not merely the assumption of a maximal L-definable hierarchy of
iterations of D: the definability of the hierarchy doesn’t enter into the result.

Proof of Lemma: If Dy | Pred(o) is a genuine hierarchy of iterations
of D then all predecessors of o are definable in L (by negative part of Path-
Independent Hierarchy Theorem). Assume that the hierarchy Dz | Pred(o)
is definable. Then o is definable, as the length of the hierarchy. But then
o+ n is definable too for all finite n, and so every ordinal less than o+ w
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is L-definable. But then the positive part of the Path-Independent Hierarchy
Theorem tells us that Dz | Pred(o+w) is adequate as a hierarchy of iterations
of D. And this hierarchy is definable in L: for o+ w is definable since o is,
and we’ve defined D). So Diyj | Pred(o) isn’t maximal among the definable
hierarchies of D-iterations. And so the assumption that it is maximal among the
definable such hierarchies, and the existential generalization of that assumption,
are inconsistent. Wl

Proof of Theorem: Assume that Djz) [ Pred(o) is a maximal hierarchy
of iterations of D. Then we can define ¢ as the largest limit ordinal A for
which Diz) [ Pred()) is a hierarchy of iterations of D. But then we can define
Dy 1 Pred(o), so it is a maximal definable hierarchy, which is inconsistent by
the Lemma. B

It is important to be clear that from the inconsistency of the claim that
there is a maximal hierarchy of iterations of D, it doesn’t follow that there is no
such hierarchy. (Any more than it follows from the inconsistency of the truth of
the Liar sentence that the Liar sentence isn’t true.) And indeed, the negation
of the maximality claim is inconsistent t0o.’* So the maximality claim has a
status very much like that of the Liar sentence, in that the assumption that
there either is or isn’t a maximal hierarchy of iterations is inconsistent. We are
in the realm of the "inherently fuzzy". (Anyone tempted to think that there
must be a way to "unify" the hierarchies into a maximal one should re-read the
response in Section 16 to the argument that there must be a way to "unify" the
effectively classical hierarchies.)

19. Hyper-determinacy and Revenge. In Section 13 I distinguished
three strengths of revenge worry. The weak form, which would not be totally
devastating if substantiated, was that once one had a hierarchy of determi-
nacy operators in a language L, one would be naturally led to a new "hyper-
determinacy" operator, not definable in L but intuitively meaningful; since it
is in an expansion L* of L, the consistency proof for L wouldn’t directly apply
(though it might be extended to L* in a completely mechanical way). The more
serious revenge worries (the "intermediate strength" worry that a consistency
proof for L* would have to be quite different from that of L, and the "strong"
worry that consistency for L* could only be achieved by giving up the truth or
satisfaction schema) seemed to depend on the view that such an operator would
be idempotent (and even given that, the strong worry had little pre-theoretic
support). We are now in a position to see that even the weak form of the worry
was unfounded: there is no way to generate an understanding of a notion of
hyper-determinacy from the hierarchy of determinacy notions that we have in
the language.

We’ve seen that we can define within L a "hierarchy" Diz; that can be ex-
tended as far as one likes; but this is not a hierarchy of iterations of D—mnor a

54Since each hierarchy has only L-definals ordinals in its domain, the lack of a maximal
hierarchy would imply that there are arbitrarily large initial segments of the ordinals all
members of which are definable in L, and that is absurd on cardinality grounds.

93



hierarchy of operators that are in any intuitive sense determinacy operators—
since it eventually starts mapping every sentence into a falsehood. (This break-
down occurs somewhere in the countable ordinals.) Moreover, it is inconsistent
to assume that there is a maximal initial segment of the ordinals on which Dy,
behaves adequately—that is, a maximal fragment Dz [ Pred(c) such that for
every limit ordinal \ < o, D[L])‘ is equivalent to the "conjunction" of all the
Dy L]B for 8 < A. Since this is inconsistent, it seems that the best we can do if
we want to avoid the danger of choosing a "hierarchy" that is inadequate is to
choose a hierarchy that we can show to be adequate. But this will always be
less than maximal. Given such a less than maximal hierarchy {Dj* | a < o},
we can always quantify over the operators in its range: calling a sentence A
"hyperdeterminately true" would then be saying

(Hy) For all v less than o, (Dy;;*A) is true.””

(o is bound to be definable in L if the fragment is adequate.) But in formulating
(H,) we are in effect just going another step in a longer hierarchy that is already
in the language. The general consistency proof for the theory of truth in L
applies to everything expressible in the language, including iterations of D longer
than those in the specific non-maximal hierarchy { D) | o < o}. So it certainly
applies to sentences containing "hyper-determinacy" claims if that simply means
claims of form (H,), for those are in the language

There is however another possibility to consider: to put it picturesquely, we
can introduce the idea of a "fuzzy initial segment" of the full "hierarchy" Djz;; in
particular, the "initial segment consisting of all and only those ordinals that are
in some adequate hierarchy", where again an adequate hierarchy (what I earlier
called a genuine hierarchy) is one that obeys (RCL). This picturesque way of
speaking makes no literal sense: since it is inconsistent to assume excluded mid-
dle for ‘adequate’, talk of an "initial segment" defined via the notion of adequacy
is simply ill-defined. Even so, there is an idea behind the picturesque talk that
can be made intelligible: that we define a "hyper-determinacy" operator using
a quantifier restricted by the predicate ‘is an adequate hierarchy’. I distinguish
two versions of this:

[H-5)A Va(a is in the domain of an adequate hierarchy O (Diy“A) is
true);

[H_]A Va(a is in the domain of an adequate hierarchy — (Dz)*A) is
true).

It should be clear from the start that explaining hyper-determinateness in
either of these ways can’t possibly serve the purposes of the person who wants
to argue for a revenge problem, even a weak one: for both H~ and H_, are
already in the language L. Since they are in the language, they can’t possibly
lead to paradox, given the general consistency proof. But it is worth seeing how

55 This should really be written as "For all « less than o, (D" A) is true of a", but I trust
the more readable notation in the text will not confuse.
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the arguments for paradox fail. In the case of both operators, the failure of the
paradoxical arguments points up the fact that "fuzzily restricted quantifiers"
have to be treated with extreme care.

We saw in Section 10 that no operator E in the language can jointly satisfy
four conditions. Those conditions were expressed in terms of models as (b,,),
(cw), (d) and idempotence; the corresponding inferential conditions are

(Cw) FEEFA— A

(d) A——-AE-FA

(bw) A —-EAE L

(Idem) E EA — EEA (or equivalently, F ~FEA — —FEA)
The reason the conditions aren’t jointly satisfiable (to transcribe an argument
from Section 10 into inferential terms) is that for any such operator E we can
formulate a sentence Qg that asserts its own lack of E-truth, so that F Qg <«
- FEQg. Then since (d) implies EQr — “EQp F ~FEQg we'd have EQp —
Qr F ~FEQE; so using (¢y), F "EEQE. Idempotence would then yield E
-EQEg, hence E Qp. (b,) would then yield £ 1, which is impossible. Given
this general result, we know that neither H~ nor H_, can possibly satisfy all of
these four conditions. The question is, which of these do they satisfy, and which
of the desirable additional conditions (a), (b) and (c¢) do they satisfy? (The
D* operators in adequate hierarchies satisfy the full (b) and (c) in addition to
(a) and (d). T take that to be highly desirable: (b,,) and (c,,) were singled out
only as minimal conditions for inconsistency with (Idem) and (d); and while
the retreat from (c) to (c,) is perhaps within the bounds of acceptability, the
retreat from (b) to (b,) would be a major one.)>® T won’t investigate (c), but
will say enough about the other principles to show that neither H- nor H_, are
operators that have much appeal.

(In discussing these matters I will occasionally state things in terms of stan-
dard set-theoretic models for L. It’s worth noting that in the definitions of
H- and H_, we could take all quantification over ordinals to be restricted to
countable ordinals; for this reason, the points raised in Sections 8-9 about the
"misleadingness of models" in dealing with sentences with unrestricted quan-
tifiers will not affect the ability to infer truth from having value 1 and falsity
from having value 0; conversely we can take clear truths to have value 1 in these
models and clear falsehoods to have value 0.)

Let’s start with H-. Here the principles (c,,) and (d) are valid (in the
extended sense introduced at the end of Section 5). The reason is that the

56Incidentally, we might want to add a further condition: that the operator E is to
strengthen a given determinacy operator D, i.e.

(cw*) F EA— DA.
Given this, E is bound to satisfy both (c) and (d), since D does. And we can now show that
(cw™) and (by) are together incompatible not only with (Idem) but with the weakened form
of it

(W-Idem) F EA — DEA.
The proof is an obvious modification of the one given: (cw*) yields F ~DEQg, which with
(W-Idem) yields F Qg, which with (b)) yields absurdity.
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L-definability of 1 is valid, as is the equivalence of True((D[lL]A>) with DA,;
so the conditional H-A — DA is valid. Since D satisfies (c,,) and (d), it is
then evident that H- does as well. (It can also be shown that H- must satisfy
condition (a).)

An inspection of the above proof shows that because H~ satisfies the princi-
ples (cy,) and (d), the sentence H~ H~@Q~ must be false (where Q5 is the "Liar
sentence" corresponding to H-). (Model-theoretically, H-H~Q- must have
value 0 in any standard set-theoretic model.) H-Q-, on the other hand, will
not have value 0 in any such model: for it is equivalent to =Q)~, and Q- won’t
have value 1. The reason: Q- says

—Va(a is in the domain of an adequate hierarchy O (Dj7;*Q~) is true);
that is,
Ja(a is in the domain of an adequate hierarchy A =((Dj11*@>) is true)),

and the only way for this to have value 1 in a model that satisfies the truth
schema is for it to be the case that for some «, |« is in the domain of an adequate
hierarchy| = 1 and |D[L]O‘QD| = 0. But |« is in the domain of an adequate
hierarchy| = 1 only if « is in the domain of a clearly adequate hierarchy, in which
case we can’t have |@Q-| =1 and ‘D[L]D‘QD} = 0. The contradiction shows that
H-Q~ can’t be 0; so idempotence fails and paradox has been blocked. (By the
reasoning of note 56, even "Weak-Idempotence" fails: that is, DH~ is strictly
stronger than H-.)

So if the operators Dip)* are deemed problematic because not idempotent,

H offers no advantage. But in fact H~ is far worse than the operators Djy®
in an adequate hierarchy, for it violates condition (b) in an extreme way: For
any sentence A whatever, H-A is "at best fuzzy". (In any reasonable
model for the language, no sentence of form H~ A gets value 1.)>7 The reason is
that H5A amounts to the claim "Vo(—(a is L-definable) V Dy is true)"; but
this claim can’t be assumed true even when A is a clear truth like ‘0 = 0, for
when "it is fuzzy whether « is L-definable" it will be "fuzzy whether Dz;* is
true", so that the disjunction "—(« is L-definable) V Dy;*A is true" will itself
be "fuzzy". In short, H- A will never be clearly true.

We see, then, that though H+ is a well-defined operator, it is quite a worth-
less one; it does not correspond to a notion of determinacy in any reasonable
sense.

What about H_,? Here the situation seems to be even worse. I say ‘seems to
be’ because sentences of form H_, A are extremely complicated—this becomes
evident when one consults the Appendix to see how the path-dependent hierar-
chies used in defining Dy are themselves defined—and I have not been able to

570f course, given that H- (i) is already in a language that has a G-semantics and (ii)
is not syntactically restricted in its application, it must be value-functional; and this means
that if there is any sentence A with value 1 for which |H5A| < 1, this must be so for every
sentence with value 1.
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come up with a rigorous argument settling exactly how H_, behaves. However,
I think there is very strong reason to believe the following:

1. In many G-logics, including all the published ones and all possible ones
that satisfy the very natural law (III;) of Section 10, H_, is a completely
trivial operator, in that H_, A is clearly false for every sentence A. (So in
a standard set-theoretic model of such a logic, |H_, A| is always 0, even if
A has value 1.)

2. In any other G-logic, H_, will share the problem of H~: |H_, A| will never
have value 1, creating a serious disadvantage as compared with the genuine
hierarchies of form DﬁL]. In these logics, H_, will also fail to be idempotent,
thus destroying the entire rationale for going beyond hierarchies of form
Dg- (H_, as defined may also fail to satisfy (c,,), though that problem

could be fixed by conjoining the above definiendum for H_, A with A.)

To substantiate 2, it would suffice to show that in any standard set-theoretic
model for L, there are ordinals « for which |« is in the domain of an adequate
hierarchy| £ |3p(p is a path of length greater than o A (DgA) is true)|;*®
to substantiate 1, it would suffice to show that in the semantics for the logics
mentioned in 1 we can strengthen this, replacing ‘¢’ by ‘>’. And I think a strong
case can be made for these claims, though I will not attempt it here since the
case depends on a careful look at the way in which the DA are defined in the
Appendix. (The fact underlying the plausibility of the claims is that |Dy Al is
evaluated by looking at \Dg A| for all 8 that precede some ordinal p for which
| satisfies | > 0, where the blank is filled by the "attempted definition
of a" that p assigns to .. For ordinals a for which |« is in the domain of an
adequate hierarchy| is between 0 and 1 and hence the "attempted definition" is
not clearly adequate, we can expect this to include ordinals 5 much bigger than
«, perhaps some for which |Ip(p is a path of length greater than )| is 0 and
hence | DS A| will be 0.)

I've claimed only a strong case for the claims 1 and 2. But a strong case
isn’t a proof; what if I'm wrong? If I'm wrong, that would have some interesting
ramifications: it would mean that the range of iterations of D available in the
language is far richer than Section 17 might have suggested. More particularly,
we could continue the sequence of non-idempotent operators even further than
was done in the general hierarchies considered there. This would not however
change anything substantive in what I've said: by the results of Section 11, the
new hierarchy would never lead to idempotence as long as we could iterate in
accordance with (RCL); and in accordance with the result of Section 18, there
would be no maximal hierarchy of iterations of H_,. And so introducing the
operator H_, wouldn’t have served the purpose that an advocate of "revenge" or
of a "unified determinacy operator" intended. (It might motivate such a person
to introduce a new hyper-hyper determinacy operator; but obviously nothing of
philosophical significance could be gained by further travel down this road.)

58In analogu with note 55, I use |F(a)| as a more readable notation for |F(v)|q.
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The crucial point is that even if my conjecture that H_, fails to meet the
conditions for being a determinacy operator, it couldn’t possibly constitute even
a weak revenge problem, because H_, is already in the language. H_, avoids the
most obvious threat of paradox by failing to be idempotent. And the general
consistency result shows that it can’t possibly lead to any paradox, because it
isin L.

20. Conclusion. The discussion of the last few sections gives strong reason
to think that we simply have no conception of any genuine hyper-determinacy
operator that isn’t definable in L: the closest we can come is operators like H~
and H_, that are definable in L but that don’t behave like a hyper-determinacy
operator (or any sort of determinacy operator) ought to behave.

I haven’t tried to argue that there is no intelligible expansion of our under-
standing of a hierarchy of determinacy operators. Indeed, it is clear from my
formal constructions that if we were to expand our mathematical language in
such a way that countable ordinals not hereditarily definable in our current L
(or even, not clearly hereditarily definable) were to become clearly hereditarily
definable, then that would expand our conception of the hierarchy: it would
enable us to make stronger "iterated determinacy" claims than we can make
today. But such an expansion of mathematics couldn’t be simply a matter of
defining new concepts in terms of current vocabulary, it would have to involve
coming to have concepts that can’t be clearly defined in the existing language;
and achieving such an expansion is no simple task.?”

In particular, part of the upshot of my argument is that such an expan-
sion can’t be achieved simply by reflecting on the hierarchies of determinacy
operators already definable in the language. The thought that reflecting on
such hierarchies leads to a concept of hyper-determinacy that transcends the
language is simply an illusion, an illusion created by the failure to appreciate
that if we try to quantify over all the determinacy operators definable in the
language, the range of the quantification is indeterminate.

This, T think, defeats the (slightly vague) weak revenge worry of Section 13.
A fortiori (and much more important), it defeats the idea that reflection on such
hierarchies leads to a concept of an idempotent hyper-determinacy operator of
the sort that might support an intermediate-strength (or perhaps even strong)
revenge worry.

Of course, one might think that there is a case for thinking that we can un-
derstand an idempotent determinacy argument that is independent of reflecting
on the hierarchies we can define. I've mentioned four possible grounds for this
thought, three in Section 13 and another in Section 12, and I'll now add a fifth.

e One is the model-theoretic revenge argument, which I believe I have re-
futed in section 9.

590ne might wonder about imaginary beings with an uncountable language that contained
a name for every countable ordinal. The results in this paper could be extended to them: it’s
simply that the hierarchies would extend into the uncountable ordinals.
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e Another is the thought that excluded middle holds generally. This is
certainly not a view I can claim to have refuted in this paper: all I have
tried to do (in section 2) is to sketch the costs that the semantic paradoxes
raise for such a view, and to elaborate a view that seems on balance to
have less drastic costs. (Of course, one may evaluate costs differently: de
gustibus non disputandum.)

e A third one is that excluded middle should at least hold for claims of the
form ‘O is a reasonable candidate for being a determinately operator’. If
that were true, we should be able to unproblematically quantify over all
reasonable candidates for determinately operators, to produce a hyper-
determinately operator that obeys excluded middle; it is then a short step
to idempotence. But why think excluded middle holds for claims of this
sort? The discussion in the last few sections provides strong reasons to
doubt this supposition, and its hard to imagine a case for the supposition
that doesn’t rely either on excluded middle generally or on the thought
that the only reasonable candidate for a determinacy operator could be
read off the model theory.

e A fourth argument (the one not directly mentioned before) is that even
if excluded middle doesn’t hold for claims of the form ‘O is a reasonable
candidate for being a determinately operator’, still we should be able
to quantify over all reasonable candidates for determinately operators to
produce a hyper-determinately operator; it may not obey excluded middle,
but it might be thought to be idempotent on other grounds. But from
the results of the preceding section, I think we can reasonably extrapolate
to the view that there is little reason to expect such an operator to be
idempotent, and little reason even to think that it will obey minimal
conditions for being a determinacy operator.

The final argument (the one from Section 12) is perhaps the one with most
intuitive force: it is that we just need a unified notion of determinacy or defec-
tiveness. Note however that this argument cannot very well be advocated by the
classical theorist, since the classical theorist has no such unified notion either.
Nor can it very well be advocated by the proponent of any other solution to
the paradoxes in which such a notion is unavailable. Indeed, I'm not sure that
there are any demonstratively consistent theories (or even non-trivial dialetheic
ones) that have such a notion available and hence are in a position to advocate
this argument. I'm willing to concede (for the moment anyway) that it would
be a point in favor of a solution to the paradoxes that it had a unified notion
of defectiveness. If there are ways to achieve this that don’t have overwhelm-
ing costs, they should be developed and weighed against the solutions to the
paradoxes sketched here.%°

60 A number of people have tried to persuade me over the last few years that the "revenge-
immune" account in [3] doesn’t really evade revenge. I should especially mention Graham
Priest, who has mostly pressed model-theoretic revenge (see [16]) and Kevin Scharp, who has
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Appendix: Proof of the Hierarchy-Existence Theorems

It’s simplest to directly prove the existence of hierarchies of operators on
formulas with a single free variable ‘v’ (‘v’-formulas). The Reasonability Con-
ditions in the definition of the hierarchy are then modified in the obvious way:
we restrict to operations on ‘v’-formulas, and in (RCL) we speak of satisfaction
by objects instead of by assignment functions. From such a "restrictive hier-
archy" of operators on ‘v’-formulas, a more general hierarchy of operators on
all L-formulas could be obtained: for by a minor extension of the ideas of note
4 we could define in Lo a function that takes operations on ‘v’-formulas into
corresponding operations on all L-formulas. (I spare you the details.)

The Hierarchy Existence Theorems of Sections 15 and 17 (modified in this
way to apply to hierarchies of operators on ‘v’-formulas) follow almost directly
from a technical lemma. Take P to be as defined in Section 15: recall that it is
an Lo-definable set each member p of which is a function with domain the set
of limit ordinals that precede o, for some limit ordinal o, that may depend on

p-

Hierarchy-Construction Lemma: There is an Lg-definable func-
tion W with domain {< p,& >|p € P A a < 0,} that satisfies the
following conditions:

1. For any p € P, W(p,0) is the identity operator on ‘v’-formulas.

2. For any p € P and any a<op,, W(p,a+ 1) is det(W(p, a)).
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3. For any p € P and any limit ordinal A<o,, W(p, ) is an operator on ‘v’-
formulas such that for any ‘v’-formula x, [W(p, A)](x) is equivalent to the
‘v’-formula Z, () that results from substituting p(A) and the standard
name of = into the blanks in

VB[Eu(_ A B<u) — the result of applying W(p,5) to ___ is
true of v.

So writing W (p, «) as [®(p)](e), we immediately obtain that for every p €
P, ®(p) satisfies the reasonability conditions for zero and successors (again,
modified to apply to operators on ‘v’-formulas). For the limit condition, on the
other hand, we get the horrible-looking

For any p € P and any limit ordinal A<c,, [®(p)](\) is an opera-
tor on ‘v’-formulas such that for any ‘v’-formula z, [[®(p)](N)](z) is
equivalent to the ‘v’-formula Z, \(x) that results from substituting
p(A) and the standard name of z into the blanks in

VB[Fu( A B<p) — the result of applying [®(p)](8) to
is true of v.

However, from the assumption that p is an L-path, what results from filling in
the first blank is true of A and nothing else, so Z, (z) is satisfied by just those
objects that satisfy all of the results of applying [®(p)](5) to x, for each 5 < .
In other words, ®(p) satisfies (RCL). Similarly for Lg-paths; but since we have
excluded middle for ‘Lz-path’ (unlike for ‘L-path), we can in the case of Lg
convert the proof to the proof of the conditional: if p is an Lg-path then ®(p)
satisfies (RCL).

It remains only to prove the technical lemma.

Proof of Hierarchy-Existence Lemma: The obvious idea for proving
the Lemma is to define the function W using transfinite recursion. But a direct
recursive definition of W seems impossible, because of the fact that condition
(3) of the Lemma doesn’t just use W (as in a normal recursive definition) but
mentions it (by referring to a formula that contains it). So instead, I will
recursively define a more generalized function F' (with little intuitive meaning,
I regret to say), then use a fixed point argument to get the desired W.

Let Y be the set of formulas of L that have only the two variables ‘3’, and
‘2’ free. We want to recursively define a function F(p,a,e) forp € P, e € Y
and a < op, whose values are operators on ‘v’-formulas. The idea is that if we
then instantiate on an appropriate instance eg, then the formula F(p, a, eg) will
serve as the desired W (and so for any specific Lo-path p, F(p, o, eo) will serve
as the desired hierarchy).

The recursive definition:

e For any p € Pand e € Y, let F(p,0,e) be the identity operator on ‘v’-
formulas.
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e Foranyp € Pande € Y and any a<oy, let F(p, a+1,e) be det(F(p, o, €)).

e For any p € P and e € Y and any limit ordinal A<o,, let F(p, A, e) be
the operator that assigns to each ‘v’-formula x the result of substituting
p(A), e, and the standard name of z in that order into the blanks in the
following schema:

V2VB[Eu( A B<p) A zis a syntactic operator on ‘v’-formulas A
— the result of applying z to __ is true of v].

It should be noted that recursive definition is not unrestrictedly valid in L: it
depends on the Replacement Schema, which is valid only in the context of ex-
cluded middle. But there is no problem with this particular recursive definition,
for it is given in the ‘true’-free fragment Lg. (The expression ‘true’ does oc-
cur here, but only in a sentence that is mentioned rather than used; it’s mere
syntax.) The recursive definition can be converted to an explicit definition of
a relation F(p,«,e) = z. Obviously for any particular ey that we restrict to,
the first two bulleted conditions of the Lemma will be satisfied (by virtue of the
corresponding conditions of the inductive definition); the task is to choose an
e that will make the third condition satisfied as well.

To this end, we now employ the Godel-Tarski fixed point theorem on the
formula ‘F(p, 5,e) = 2’, to get a function W (p, §) (defined in Lg) for which

VpYBIW (p, B) = F(p, B, (W (p, B) = 2))].5!

Using ‘W (p, B8) = 2’ to instantiating the e in above recursive definition, the limit
condition of the definition yields

e For any p € P and any limit ordinal A<o, W(p, \) is an operator that
assigns to each ‘v’-formula = the result of substituting p(\), the definition
of ‘W(p,5) = z’, and the standard name of z in that order into the blanks
in the following schema:

V2VB[Eu( A B<p) A zis a syntactic operator on L-formulas A
— the result of applying z to ___is true of v].

So for any p, [W(p, A)](x) is equivalent to the result of substituting p(A) and
the standard name of = into the blank in

VB[Fu(_ A B<p) — the result of applying W, (p, 5) to ___ is true
of v],
which is Condition (3).

61The most familiar form of the fixed point theorem applies to formulas. Applying it to the
formula ‘F'(h, 3,e) = z’, we get a three-place formula G(h, S, z) of Lo such that

Vz[G(h, B, z) < F(h,B3,< G(h,B,z) >) = z].

But G(h, B, z) defines a function; writing it as W(h, 8) = z, we get the claim in the text.
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