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Abstract

The paper offers a solution to the semantic paradoxes, one in which (1)
we keep the unrestricted truth schema "True((A)) -θ A”, and (2) the object
language can include its own metalanguage. Because of the first feature,
classical logic must be restricted, but full classical reasoning applies in “or­
dinary” contexts, including standard set theory. The more general logic 
that replaces classical logic includes a principle of substitutivity of equiva­
lents, which with the truth schema leads to the general intersubstitutivity 
of True((A)) with A within the language.

The logic is also shown to have the resources required to represent the 
way in which sentences (like the Liar sentence and the Curry sentence) 
that lead to paradox in classical logic are “defective”. We can in fact define 
a hierarchy of “defectiveness” predicates within the language; contrary to 
claims that any solution to the paradoxes just breeds further paradoxes 
(“revenge problems”) involving defectiveness predicates, there is a general 
consistency/conservativeness proof that shows that talk of truth and the 
various ”levels of defectiveness” can all be made coherent together within 
a single object language.

1 Introduction

Kripke's theory of truth ([9]), in its strong Kleene version (where the law of ex­
cluded middle is not valid without restriction), has a very nice feature: True( (A))
(the assertion of a sentence A that it is true) is everywhere intersubstitutable
with A, for any sentence A whatever (in a language without either indexicals, 
ambiguities, etc., or quotation marks, attitude contexts, etc.). But an unpleas­
ant feature of the theory is that there is no biconditional for which A A is 
a logical law, or (equivalently, given the intersubstitutivity property) for which 
True ((A)) A holds in general. Indeed, there is no conditional for which 
A A is a logical law, or for which either True ((A)) A or its converse hold 
generally.

I will propose a natural extension of Kripke's theory to include a new con­
ditional ^, satisfying A A, such that even in the extended language the 
intersubstitutivity of True ((A)) with A holds; so if is defined from in the
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obvious way, we get both A A and True ((A)) A as general theorems. 
In short, we get the naive theory of truth: the truth schema together with inter­
substitutivity. The new conditional obeys many of the laws we expect of a 
conditional, such as modus ponens and contraposition; some laws, such as the 
inference from A (B C) to A Λ B C, fail, but this is inevitable given 
the Curry paradox (mentioned below).

I gave a different, rather artificial, way of adding such a conditional to 
Kripke's theory in [5]; the one that follows leads to a different logic, stronger 
in important respects though also weaker in others. The one offered here has 
several advantages. First, it is based on a very natural semantics. Second, 
the new conditional is equivalent to the classical conditional in those contexts 
where excluded middle is assumed for the antecedent and consequent. Third 
and probably most important, the new conditional can be used to show that 
the theory is not subject to ”revenge problems”.

More fully, the addition of the new conditional operator to the language al­
lows for the definition of a natural ”determinately operator”, so that we can 
consistently handle ”extended paradoxes”, such as sentences that assert of 
themselves that they are not determinately true. I will discuss the resolution of 
a number of such extended paradoxes—including some that notoriously make 
trouble for other attempted resolutions of the paradoxes—near the end of the 
paper.

As we'll see, we can in fact define a transfinite hierarchy of stronger and 
stronger determinately operators within the language. Ifwethinkofa determi­
nately operator as attaching to a truth predicate to yield a predicate of ”strong 
truth”, we can think of the theory as providing an account of ”stronger and 
stronger truth predicates”. But unlike most approaches that allow a hierarchy 
of ”truth predicates”, no infinite hierarchy of metalanguages is required. In­
deed there need be no distinction between metalanguage and object language 
atall: ifthe object language is rich enough to include standard set theory (ZFC) 
and a single notion of truth that obeys the truth schema (and of course the 
Kleene connectives and the new ^), then all these other "truth predicates” are 
definable within the object language.

2 The Construction

Let's start with a ground language L that is adequate to arithmetic, in the sense 
that one can explicitly define in L a predicate ‘natural number' and predicates 
corresponding to the usual basic arithmetical notions (‘is zero', ‘is the succes­
sor of', ‘is the sum of' and ‘is the product of'). As usual, the point of wanting 
arithmetic is that it can be used to develop the formal syntax of L and cer­
tain extensions of it, by Godel numbering. I also suppose that the language 
contains, or has definable in it, the usual vocabulary for talking about finite 
sequences (viz., the 1-place predicate ‘x is a finite sequence', the 2-place predi­
cates ‘n is the length of x', and the 3-place predicate ‘b is the nth member of x');
when L is just the language of arithmetic this is no extra assumption, but in the 
general case that additional vocabulary is required as a basis for semantic talk, 
e.g. of satisfaction of formulas by finite sequences of objects.
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Let L+ be the result of adding to L both a 1-place predicate ‘True' and a
2-place operator on formulas. ‘Free variable' is defined in the usual way: in 
particular (in contrast to the preferred treatment of in [5]), variables that are 
free in A or in B also count as free in A B.

Let M be a classical model for L. (The stipulation that M be classical re­
flects the assumption that classical logic is appropriate to L if not to L+. It is 
arguable that one should relax this assumption when L contains vague terms, 
and in fact the account here easily generalizes to where M is a 3-valued model. 
But let's keep things simple.) I will assume that ”the arithmetical part of M” is 
a standard model of arithmetic; where by ”the arithmetical part of M ” I mean 
the submodel whose domain is the set of objects that satisfy the definition of 
‘natural number'. So M must be infinite. Analogously, I assume that M val­
idates the usual theory of finite sequences.1 (Given the standardness of the 
arithmetical part of the model, anything satisfying ‘finite sequence' must have 
a genuinely finite number as its length.) Otherwise, M is arbitrary.

It will simplify the development (or at least the notation) if we assume that 
for every object in M there is a name in L and hence in L+.2 This is no real loss 
of generality: if the original L and L+ don't have that, we can pass to an L* 

and L+* that do. Assuming the original L had a finite or countable vocabulary, 
the new L and L+ will have a vocabulary of the same cardinality as M . I now 
suppose that the syntax of L+ (the new one, i.e. L+*) is developed within L, 
in a standard way. (Because L+ may be uncountable, we can't just use Godel 
numbering properly so called; but we can give name-free formulas ordinary 
Godel numbers, and assign to sentences finite sequences whose first member 
is the Godel number of a name-free formula and whose other members are 
names. I'll call these ‘Godel codes', and will sometimes identify sentences with 
their Godel codes.)

Let Ω be the initial ordinal of the cardinality that immediately succeeds that 
of M. For any ordinals α and σ, with σ < Ω, I will now extend M to a 3-valued 
model Μα,σ of L+. The three values I call 1, 0, and 1. (Please do not think 
of these as meaning ‘true', ‘false', and ‘neither true nor false'. A slightly bet­
ter rendition would be ‘determinately true', ‘determinately false', and ‘neither 
determinately true nor determinately false', though as we shall eventually see, 
this is inaccurate as well.) The models are to be constructed in the lexicograph­
ical order; that is, (α, σ') (α*,σ*) iff either α < α* or both α = α* and σ < σ*. 
I will eventually argue that there is a non-zero Δ such that for all β > 0, all the 
ΜΔ·β,Ω coincide. The resulting ΜΔ,Ω (which is unique, since any two ordinals 
have a common non-zero right multiple) I'll call M*, and it will be the desired 
extension of M to L+. We can think of the different values of α < Δ as repre­
senting different ”super-stages” toward the construction of the ”final answer”

1I.e., that every finite sequence has exactly one length, which is a positive integer; that for every 
sequence x and every positive integer k less than or equal to its length, there is exactly one kth 

member of x; and for each natural number n the claim
Vxi...Vxn3!y[y is a finite sequence Λ n is the length of y Λ x1 is the 1st member of 
y Λ ... Λ xn is the nth member of y].

2The sole point of this is to avoid having to assign semantic values to formulas with free vari­
ables; this in turn avoids having to relativize semantic value to an assignment of members of the 
domain of M to the free variables, which is notationally messy.
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M* as to what the 3-valued model should be; the different values of σ for a 
fixed α represent different ”mini-stages” within a super-stage, and I will often 
drop the ordinal for the mini-stages out of the notation.

Notation: [M] is the domain of M. SENT is the subset of [M] consisting 
of the Godel codes of sentences of L+; neg is the operation on Godel codes 
corresponding to negation. If t is a variable-free term of L+ (hence of L), den(t) 
is its denotation in M; if p is a predicate of L, pM is its extension in M. If A is a 
formula of L+, A(x/t) is the result of substituting t for all free occurrences of x 
(changing the bound variables of A as necessary to avoid conflicts). (A) is the 
name of the Godel code of A. [β, α) is the set of ordinals > β and < α.

Each new model Μα,σ has the same domain as M, and all the terms denote 
what they denote in M. Μα,σ assigns semantic values in {0, 2, 1} to sentences 
of L+ as follows:

1. If p is an n-place predicate of L and t1,...,tn are variable-free terms:

t t il iff (den(ti), ..., den(tn)) G Pm
|p( ι>···> n)|α,σ i ο otherwise.

2. If t is a variable-free term,

1

0True't .,■

1
V 2

iff for some sentence A, den(t) is the Godel code of A
and (3δ < ^(|A|a^ =1);

iff for some sentenceA, den(t) is the Godel code of A
and (3δ < σ)(|A|a δ = 0), or there is no sentence A 
for which den(t) is the Godel code of A;

otherwise.

3. ' A ■■,■ = 1 - |A|a^

4. |A Λ Β|α,σ = min{|A|a^ , |Β|«,σ}

5. |A v Β|α,σ = max{|A|a^ , |Β|«,σ}

6. |VxA|ao. = min{|A(x/t)|a σ 11 is a variable-free term }

7. |3xA|a σ = max{|A(x/t)|a σ 11 is a variable-free term }

8.

|A ■ B|

1 iff (3β<α)(νγ G [e,a))(|A|Y ,ω < |Β|γ,ω)
0 iff (3β < α)(νγ G |e,a))(|A|7>n > |Β|Ύ,Ω)
2 otherwise.

This is a legitimate inductive definition (by complexity for fixed α, σ; in stages 
2 and 8 we appeal to the values of formulas that may have greater complexity 
than the one whose value is at issue, but only for pairs (β, δ) strictly prior to 
(α, σ) in the ordering). We need to look at its properties.3

3This construction is somewhat similar in spirit to that of Brady [2]; but Brady uses a different 
treatment of the conditional at each stage, which makes his construction monotonic, quite unlike 
what we have here. The conditional here, rather, is governed by a revision rule of the sort that 
Gupta and Belnap [6] use for the truth predicate. The results that emerge from the present con­
struction are quite different from those that emerge from either Brady or Gupta and Belnap. (1) 
Gupta and Belnap get classical logic, and hence must restrict the truth schema. (2) Brady does not 
get the rule B3 below (or the Explosion rule that follows from it), and we will see that that rule 
plays a crucial role in shaping the character of the present theory.
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Note that the value of \A B\n σ is always the same as \A B\a 0 (or 
\A B\a Ω); that is, it is completely independent of σ. This means that for 
each fixed α, the sequence of a's is really just a standard Kripkean construction 
of a minimal fixed point over an assignment of the values \A B\n 0 to the 
conditionals. The first three results below simply make this more precise.

The Kripke monotonicity lemma: For each α and each A, if σ < ρ 
and \A\n σ has an integral value (0 or 1), then \A\n p has that same 
integral value.

Proof: Let Un,σ be the set of sentences A such that \A\n σ = 1. Then the 
set of sentences A such that \A\n σ = 0 is {A \ -A is in Un , σ}; call this U^gg. 
We need that if σ < ρ then Un,σ C Un,p (from which it follows that UOgg C 
UnePg). The proof is by induction on ρ (varying σ in the induction, but holding 
α fixed). The claim holds vacuously if ρ is 0. Suppose that ρ > 0. We show by 
a routine subinduction on the complexity of sentences A in the language that 
for all σ < ρ, if A e Un,g then A e Un,p and if A e UOgg then A e Unp. If A is a 
conditional, these are trivial since the value of any conditional is independent 
of the mini-stage. It's also trivial for atomic sentences of the ground language 
L. If True(t) e Uag, then for some sentence B and some δ < σ, den(t) is the 
Godel code of B and B e Ua,$; since δ < ρ, True(t) e Un,p. If True(t) e U^gg, 
then either (i) for some sentence B and some δ < σ, den(t) is the Godel code 
of B and B e Ungg; or (ii) den(t) is not the Godel code of a sentence. Either 
way, True(t) is in Ungg. If -B e Ung, B e U^g, so by induction hypothesis 
B e Urne and so -B e Un,p; similarly if-B e UOgg. Conjunctions, disjunctions 
and quantifications are easy. ■

Kripke Fixed Point Theorem: For each α there is a σ [α] < Ω such 
that for all σ > σ[α] and all A, \A\n σ = \A\n σ[α]. (So in particular, 
\AL.<> isjust \A\n,g[n].)

Proof: The monotonicity lemma says that if σ < ρ then Un,g C Un,p (where 
these are as in the proof of that lemma). Since the cardinality of the set of 
sentences is less than that of the predecessors of Ω, it can't be that the inclusion 
is proper for all ordinals less than Ω; so there is a σ[α] < Ω with Un,g[n]+1 = 
Uag[n]. It follows that U^ = U2,g[a]. So \A\a,g[n]+i has the same value as 
\A\a,g[n]; from which it follows that for all σ > σ [α],\A\n,g = \A\a,g[n]. ■

Kripke Fixed Point Corollary: For each α and each A, \ True ((A)) \ ασ [n] 
\A\n σ[α]. (And \True (t)\α σ[α] is 0 when den(t) is not a sentence.)

Proof: \True ((A))\a,g[n] is \True ( (A) )\α,σ [α] + 1 by the fixed point theorem, 
which by Clause 2 above and monotonicity is 1 iff \A\n σ[α] is 1 and 0 iff \A\n σ[α] 
is 0, hence 2 iff |A|nig[n] is j. ■

It easily follows that True ((A)) is intersubstitutable with A when these are 
not within the scope of an ^, but in fact that restriction is unnecessary. More 
precisely:

Lemma on Substitutivity of Truth: For any sentences A and B, if 
B* results from B by replacing one or more occurrences of A by 
True((A)) then for any α \B\a,g[n] = \B*\n,g[n].
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Proof: It obviously suffices to prove this for a single substitution, and to 
do that we use an induction on the depth of the embedding of the substituted 
occurrence of A in B. The basis (the case where B is A) is just the Fixed Point 
Corollary. The induction clauses corresponding to the connectives other than 

hold by virtue of those connectives being degree-functional for any α and σ.
The induction clause corresponding to goes by a subinduction on α. ■

For much of what follows, there will be no need to make the mini-stages 
explicit, and so I will frequently drop them from the notation; that is, I'll let 
|A|a abbreviate |A|a Ω, or equivalently, |Α|α σ[α]· (The ordinal for mini-stages 
is rarely needed in calculation of semantic values: in determining the value of 
|Α|α Ω, the only clause of 1-8 that requires a look at a mini-stage other than Ω 
is clause 2, and we can usually just use the Fixed Point Corollary for that. The 
proofs of some key theorems will require bringing in mini-stages, but we can 
do that as needed.)

Let's now look at the semantic values of the conditional. It is immediate 
from 8 that for any A and B, |A B |0 is 1, and that |A B |α+1 is either 1 or 
0, depending on whether |A|a < |B|α. At limits λ, |A B|A can have any of 
the three values; but we have the following continuity result:

Continuity Lemma for Conditionals: At any limit λ, the value of a 
conditional is continuous: that is,

( 1 iff (3α<λ)(νβ e [α, A))(|A B|e = 1)
|A B|a = < 0 iff (3α<λ)(νβ e [α, A))(|A B|e = 0)

[ 1 otherwise.

Proof: The Right to Left halves of the 1 and 0 clauses are straightforward: e.g., 
if (3α < λ)(νβ e [α, λ)) |A B|e = 1, then in particular (3α < λ)(νβ e 
[α, λ)) |A B|e+i = 1, so (3α < λ)(νβ e [α, λ)) |A|g < |B|g, so |A B|A = 1. 
The Left to Right involves an induction: we suppose the result holds for all 
limits < λ and we prove it for λ. Suppose |A B|A = 1; then for some α < λ, 
(νβ e [α, λ)) |A|e < |B|e. Then (νβ e [α, λ)) |A B|β+1 = 1. So by induction 
hypothesis, (νβ e [α + 1, λ)) |A B|e = 1. The 0 case is analogous. ■

Define ||A| | (the ”ultimate value” of A) as

f 1 iff (3α)(νβ > «)(|A|e = 1)
0 iff (3α)(νβ > «)(|A|e = 0)

[ 1 otherwise.

It is clear that when either ||A| | is 0 or ||B| | is 1, then ||A B| | is 1, and that 
when ||A| | is 1 and ||B| | is 0, ||A B| | is 0. Also that if ||A B11 is 1, then 
||A| | < ||B| |. When ||A| | is 1 and ||B| | is 1, or when ||A| | is 1 and ||B| | is 0, 
the above leave open whether ||A B| | is 0 or 2; and both are possible.4 On 
the ||A| | = ||B| | = 2 case, more in a moment.

4When ||A| | is 1 and ||B| | is 2, || A B| | will be 0 iff there's an α after which |B|a never takes 
value1. The simplest case where this condition holds is the Liar sentence, which (as we'll see) has 
value 2 at all stages; and a simple case where the condition fails is the Curry sentence, which as 
we'll see takes values 0 and 1 arbitrarily late. When ||A| | is 1 and ||B| | is 0, ||A B| | will be 0 iff 
there's an α after which | A| α is never 0; again the Liar sentence is one case of this, and the Curry 
sentence isn't.
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Note that as a consequence of the continuity lemma, we have that || A Β11 =
1 iff for all sufficiently large α, |A|a < |B|α. (The right hand side directly gives 
only that |A B\a = 1 for all sufficiently large successor α; but the continu­
ity lemma extends this to sufficiently large limit ordinals as well.) Similarly,
|| A B| | = 0 iff for all sufficiently large α, |A|a > |B|a.

A natural question is: are there ordinals α such that for every sentence A, 
|A|a = ||A| |? I call such values of α acceptable points, and the nature of the the­
ory depends very much on whether there are any, and on whether they occur 
arbitrarily late in the sequence of ordinals. For instance, without acceptable 
points, there would be no obvious reason to suppose that there couldn't be 
sentences A and B for which ||A v B| | = 1 even though neither ||A| | = 1 nor 
||B| | = 1: the disjunction has value 1 as long as there is a point past which 
\B\a is 1 whenever |A|a isn't 1, and it certainly isn't obvious that this requires 
that there is a point past which either |A|a is always 1 or |B|a is always 1. If 
on the other hand there are acceptable α, the Kleene rules hold at them, so this 
situation can't arise.

Another consequence of there being arbitrarily big acceptable points is that 
when ||A| | = ||B| | = 2, ||A B| | is either 2 or 1. (There are cases of both.) 
Reason: if ||A| | = ||B| | = 2, then if Δ is acceptable, |A|A = |B|A = 2, so 
|A ■ B|a+i is 1; so if acceptable points occur arbitrarily late, ||A B| | can't 
be 0. We see then (using also the remarks of three paragraphs back) that if there 
are arbitrarily big acceptable points, we have the following table of possible 
values for :

B=1 B=2 B=0
A=1 1 p 0
A = 2 1 1,2 2,0
A=0 1 1 1

In the next section, I will give the simplest argument I have been able to 
find that there are indeed acceptable points, and that they occur arbitrarily 
late. (Indeed, I'll sketch a proof that there are acceptable points such that any 
non-zero right-multiple of them is acceptable.) A price of its simplicity is that 
the proof is less informative than one might like about the way the values of 
sentences change as the level increases toward an acceptable point. I believe 
a more informative proof should be possible, which would show among other 
things that acceptable fixed points (meeting the right-multiple condition) occur 
prior to Ω.5 But the bare existence of arbitrarily late acceptable points is all that 
I require for my main claims, so I will limit myself to that.

3 Acceptable points

Let SENT be the set of sentences of L+. For any α, let f (α) be the function that 
assigns to each A in SENT the value |A|a determined by the valuation rules. If 
v = f (α), I say that α represents v. And if f (α) = f (β) I say that α is equivalent 
to β.

5In Section 5 I will provide a detailed discussion of some examples; this should give a pretty 
good sense of how the values of sentences reach the values they take on at acceptable points, even 
in absence of the more informative proof.
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Let FINAL be the set of functions v that are represented arbitrarily late, i.e. 
such that (να)(3β > α)(ν = f (β)).

Prop. 1: FINAL = 0.

Proof: If it were empty, then for each function v from SENT to {0, 2, 1}, 
there would be an αν such that (νβ > αν)(v = f (β)). Let θ be the supremum 
of all the αν. Then for each function v from SENT to {0, |, 1}, v = f (θ). Since 
f (θ) itself is such a function, this is a contradiction. ■

Call an ordinal γ ultimate if it represents some v in FINAL; that is, if (να)(3β > 

α)(/ (Y) = f (β)).

Prop. 2: If α is ultimate and α < β then β is ultimate.

Proof: If α < β, then for some δ, β = α + δ. Suppose α is ultimate. Then 
for any μ, there is an ημ > μ for which f (α) = f (ημ). But if f (α) = f (ημ), then 
f (β) = f (α + δ) = f (ημ + δ), and ημ + δ > μ; so β is ultimate. ■

Prop. 3: For any A, ||A| | = 1 iff for every ultimate α, |A|a = 1; 
similarly for 0 and therefore for 2.

Proof: Suppose that ||A| | = 1, i.e. that there is an α such that (νβ > 
α)(^β = 1). For any ultimate ordinal γ, there is a β > α such that f (β) = f (γ), 
hence in particular for which |A|e = |A|γ; so |A|Y = 1. Conversely, suppose 
that |A|a = 1 for every ultimate α. Then by Prop. 2 we have (νβ > α)(| AL = 1) 
whenever α is ultimate; since there are ultimate ordinals by Prop. 1, ||A| | = 1. 
(The claim with 0 instead of 1 can be proved analogously, or deduced from the 
claim for 1 via negations.) ■

Given Prop. 3, the requirement that an ordinal α be acceptable amounts to 
the requirement that VA[|A|q = 1 iff νβ (if β is ultimate then |A|e = 1)] (and 
similarly for 0, though that's redundant). I now proceed to find an acceptable

Start with any ultimate ordinal τ, however large. Then every member of 
FINAL is represented by some ordinal > τ ; and since FINAL is a set rather than 
a proper class, and τ is ultimate, there must be a ρ such that τ + ρ is equivalent 
to τ and every member of FINAL is represented in the interval [τ, τ+ρ). Finally, 
let Δ be τ + ρ · ω.

Prop. 4: For any finite n and any α < ρ, f (τ + ρ · n + α) = f (τ + α).

Proof: By choice of ρ, f (τ+ρ) = f (τ). So for any β, f (τ+ρ+β) = f (τ+β). If 
β < ρ·ω, write it as ρ·η+α, where α < ρ. Then f (τ+ρ+ρ·η+α) = f (τ+ρ·η+α); 
that is, f (τ + ρ · (n + 1) + α) = f (τ + ρ · n + α). The result then follows, by 
induction on n. ■

Corollary to Prop. 4: For any n, every member of FINAL is repre­
sented in the interval [τ + ρ · n, τ + ρ · (n + 1)). ■

Prop. 5: For any sentences B and C, |B C|Δ = ||B C11.

Proof: Suppose ||B C11 = 1. By Props. 3 and 2, |B C|α+1 = 1 for all 
α+1 in [τ, Δ), so \B\a < |C|α for all α in [τ, Δ) (using the fact that Δ, i.e. τ+ρ·ω,
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is a limit); so |B C|Δ = 1. Similarly, if ||B C11 =0, then |B C|Δ = 0. It
remains to prove the converses.

Suppose |B C|Δ = 1. Then for some α < τ + ρ · ω, we have that (νβ G 
[α, τ + ρ · ω))(|B|β < |C). Since α < τ + ρ · ω, there must be an n such that 
α < τ + ρ · n. So (νβ G [τ + ρ · n, τ + ρ · ω))(|B|e < |C). But by the corollary 
to Prop. 4, every member of FINAL is represented in [τ + ρ · n, τ + ρ · ω); so for 
every ultimate ordinal β, |B< |C. It follows by the valuation rules that for 
every ultimate β, |B C|g = 1; so ||B C11 = 1. Similarly, if |B C|Δ = 0
then ||B C11 = 0. ■

Fundamental Theorem: For any sentence A, |A^ = ||A| |. That 
is, Δ is acceptable. (And since it was chosen to be bigger than an 
arbitrarily big τ, this gives that acceptable points occur arbitrarily 
late.)

Proof: Since Δ is ultimate, we know from Prop. 3 that if ||A| | = 1, |Λ|Δ = 1, 
and similarly for 0. We need the converses; or equivalently, we need that if 
||A| | = 2 then |Λ|Δ = 2. Making the mini-stages explicit (and recalling that for 
any α, if a sentence has value 2 at (α, Ω) then it has that value at all (α, σ)), the 
claim to be proved is that (VA)(Va)(if ||A| | = 2 then |Λ|Δ σ = 2). Or reversing 
the quantifiers, that (Va)(VA)(if ||A| | = 2 then |Λ|Δ σ = 2). Suppose this fails; 
let σ0 be the smallest ordinal at which it fails. We get a contradiction byproving 
by induction on the complexity of A that

(*) (VA)( if ||A| | = 2 then |A|^0 = 2).

If A is a ground atomic sentence (atomic sentence of L), || A| | is not 2, so the 
claim is vacuous.

Similarly if A is True(t) where den(t) is not a sentence.

Suppose A is True(t) where den(t) is a sentence C. Then if ||A| | = 2, ||C11 = 
2, since A and C must have the same value at each stage. So by choice of σ0, 
|C|Δ σ = 2 for all σ < σ0. But then by the valuation rules, |True(t)|Δ σθ = 2.

If A is a conditional, then by the valuation rules |Λ|Δ is |A|Δ Ω, i.e. |Λ|Δ,
which is 2 by Prop. 5.

The other cases use the claim that (*) holds for simpler sentences, and are 
fairly routine. E.g., if A is VxA, then if ||A| | = 2, there is a t0 such that 
||A(t0/x)11 = 2 and for every t, ||A(t/x)| | G {2, 1}. But for any t for which 
||A(t/x)| | is 2, includingt0, the induction hypothesis gives that |A(t0/x)^ σο = 
2; and for any t forwhich ||A(t/x)| | is 1, |A(t/x)^ Ω is 1 and so |A(t/x)^ σο G 

{2, 1}. So by the valuation rules for V, |VxA^ σθ = 2. ■

Although I won't actually need this, it is helpful to remark that if Δ and Δ + 
ρ* are the first two acceptable ordinals, then for any β, Δ + ρ* · β is acceptable. 
(The proof is by transfinite induction on β, and the successor case is trivial. For 
limits, use the continuity of conditionals at limits, and then extend to arbitrary 
sentences as in the proof of the Fundamental Theorem.) For sufficiently large 
β, Δ + ρ* · β is itself of form ρ* · β; letting Δ* be Δ + ρ* · β for such a sufficiently 
large β, it follows that Δ* · γ is acceptable for all non-zero γ. That is the form 
of the Fundamental Theorem promised early in Section 2.
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4 The logic of —

We need to define validity for sentences in L+ . Probably the simplest approach 
is substitutional. Let Q be a pure quantificational language with the extra con­
nective —. (It can contain uninterpreted n-ary predicate letters for each n, in­
cluding 0, and uninterpreted names.) Let a realization be a function assigning to 
each sentence letter of Q a sentence of L+ and to each n-ary predicate letter of 
QaformulaofL+withexactlythefirstnvariablesofL+free.Anyrealization 
s generates, for each formula C of Q, a formula Cs of L+ with the same free 
variables; if the n-ary predicate p is assigned the formula θ(ν1,vn), then any 
formula of form p(vj-1,..., vjn) will be assigned the corresponding θ(ν5·1,..., vjn). 
If C is a sentence of Q and Γ is a set of sentences of Q, call the inference from 
Γ to C valid iff for any such realization s such that \ \ rs \ \ = 1, \ \ Cs \ \ = 1; here 
\ \ rs \ \ is the greatest lower bound of {As \ A e Γ}. (Note that s is a scheme 
for substituting sentences of L+, not L; it is essential to consider substitutions 
of sentences containing ‘True', so as to get sentences with value 2.) And call C 
itself valid iff the inference from 0 to C is.

Write A1, ..., An =LCC C to mean that the inference from A1, ..., An to C 
is valid. (LCC stands for "the logic of circularly defined concepts”-”circular 
logic” for short!-reflecting the view advocated in [6] that the problems about 
truth are simply instances of problems about circularly defined concepts gen­
erally.) I'll omit the subscript, except in a few contexts when classical validity 
=class or Kleene validity =K is also in view. Here is a partial axiomatization 
of the relation =LCC. (To avoid excess quantificational axioms, I imagine that 
3 is defined in terms of V and - in the usual way.)

Sentential Axioms:

A1 = A - A

A2 = --A — A

A3a = A - A V B

A3b = B — A V B

A4a = A Λ B — A 

A4b = A Λ B — B

A5 = A Λ (B V C) -— (A Λ B) V■ (A Λ C)

A6 = (A — -B) — (B — -A)

A7 = (A — -A) -(T- A) [T is anything of form B — B]

B1 A, B = A Λ B

B2 A, A — B = B (Modus ponens)

B2* A, -B = -(A — B)

B3 A = B — A

10



B4 A — B = (C - A) - (C - B)6

B4* —[(C - A) - (C - B)] = —[A - B]

B5 (A - B) Λ (A - C) = A - (B Λ C)

B6 (A - C) Λ (B - C) = (A V B) - C

Quantifier Axioms:

C1 = VxA — A(x/t) [with the usual restrictions on legitimate substitution] 

C2 = Vx(A V Bx) — A V VxBx, when x is not free in A 

D1 A(x) = VxA(x)

D2 Vx(Ax — Bx) = VxAx — VxBx 

D3 Vx(—Ax — Ax) = —VxAx — VxAx

Structural Axiom:

A |= A

Rules: Aside from the two obvious structural rules 

If Γ = A and Γ C Δ then Δ = A 

If Γ = A and Γ, A = B then Γ = B,

we need only disjunction elimination:

If Γ, A = C and Γ, B = C then Γ, A V B = C.

Comparisons: There are at least two other systems in the literature that 
keep the full intersubstitutivity of True((A)) with A in a logic that contains a 
conditional validating A — A and thus in which we get the full truth schema: 
[2] and [5]. Those systems contain all the unstarred axioms of the present sys­
tem except for B3 and A7;7 they also contain ”conditional strengthenings” of 
some of the B and D axioms: for instance, both contain the following strength­
ening of B4

= (A — B) Λ (C — A) — (C — B),

6From this we can derive A B = (B C) (A C). To prove that, note first that the
weaker form

(*) A B, B C = A C

follows directly from B4 and B2, by relettering. Note second that = (A B) (—B —A) 
and = (—B —A) (A B). (Proof of first: A6 gives (—B —B) (B ——B), hence 
B ——B using A1 and B2. But then B4 gives = (A B) (A ——B). And A6 gives 
= (A ——B) (—B —A); so by (*), = (A B) (—B —A). Proof of second: Using 
A2 and B4 we get = (A ——B) (A B); and A6 gives = (—B —A) (A ——B); so 
by (*), = (—B A (A B).)

For the main result: A B = —B —A = (—C —B) (—C —A), using the above
(and B2) and B4. But also, = (—C —A) (A C) by the above, so A B = (—C
—B) (A C) by (*). And = (B C) (—C —B) by the above, so A B = (B

C) (A C) by (*).
7And [5] contains B4*.
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and [5] contains the additional strengthening 

=(A— B)— [(C— A)— (C— B)].

Despite the loss of those ”conditional strengthenings” in the present system, I 
prefer this one because it contains B3: as we'll see, B3 is extremely important 
to shaping the approach to revenge problems that I'll be advocating. ([5] did 
contain a different weakening of the classical theorem A — (B — A), but one 
rather less useful than B3; [2] contained nothing of this nature at all. Also, [5] 
did contain an important consequence of B3, the explosion rule; [2] doesn't 
have that either (it is a relevance logic).)

Soundness: It is straightforward to verify that these axioms are all true, and 
that the rules all preserve truth.8 Let Γ \~LCC A mean that it is provable in this

8The validity of the main rule, disjunction elimination, is evident from the Fundamental Theo­
rem: if ||A V B| | = 1 then |A V Β|δ = 1, so at least one of |Α|Δ and Β|δ is 1, so at least one of 
|| A| | and || B| | is 1.

Here's a demonstration of the validity of most of the axioms. (The omitted ones are obvious.)
A1 through A5 and C1, C2: in each case the Kleene rules determine that the value of the an­

tecedent is no greater than that of the consequent at any stage, so the conditional has value 1 at 
any stage other than 0.

A6: If |A —B|a is 1 then for all sufficiently big predecessors β of α, |A|e < 1 — |B|e and 
hence |B|e < 1 — |A|e, so |B — A|a is 1. Similarly, if |B — A|a is 0, |A — B|a is 0. So for 
all α, |A —B|a < |B — A|a, and so |(A —B) (B — A)|a is 1 whenever α > 0.

A7: The left and right hand sides have the same value for each α.
B2: Suppose ||A| | and ||A B| | are both 1. Then there are α1 and α2 such that (νβ > 

a1)(|A|e = 1) and (νβ > a2)(|A B|e = 1). The latter implies that (νβ > α2 + 1)(|A|e < 

|Β|β). So letting α be max{a1, α2 + 1}, it follows that (νβ > α)( |Β|β = 1);so ||B| | = 1.
B2*: If ||A| | and ||—B| | are both 1, there's an α such that (νβ > «)[|A|e = 1 Λ |Β|β = 0]; so 

(νβ > α + 1)[|A B|e = 0], so (νβ > α + 1)[|—(A B)|e = 1],so ||—(A B)|| = 1.
B3: Suppose ||A| | = 1. Then for some α, (νβ > α)(|A|e = 1). So (νβ > α + 1)(|B A|e = 1), 

so ||B A| | = 1.
B4: Suppose ||A B| | = 1. Then there is an α such that for any β > α, |A|e < |B|e. Now 

suppose ||(C A) (C B)| | < 1. Then for some βο > α + 1, |C A|^ > |C B|^;
choose the smallest. βο can't be a successor: that would require |C|^-1 < |A|e -1 and 
|C|ft,-1 > |B|ft,-i, contrary to the fact that |A|^-1 < |B|^-1. For the case where βο is a 
limit, we have that either |C A|^ = 1 or |C B|^ = 0. In the first case, C A eventually 
has value 1 prior to βο, so by definition of βο, C B does too, so |C B|^ = 1. In the second 
case, C B eventually has value = 1 prior to βο, so by definition of βο, C A does too, so 
|C A|e =0. Contradiction.

B4*: Suppose ||—((C A) (C B))| | = 1, i.e. ||(C A) (C B)| | = 0. Then there 
is an α such that whenever β > α, |C A|e > |C B|e .In particular this is so for all β of form 
γ +1 (where values of 1 don't occur for conditionals), so we have that for all sufficiently large γ, 
|C|Y < |A|Y and |C|Y > |B|Y, hence |A|Y > |B|Y. So for all sufficiently large γ, |A B|Y+1 = 0, 
and by the continuity of conditionals at limits this implies that |—(A B) | δ = 1 for all sufficiently 
large δ, and hence ||—(A B) | | =1.

B5: Suppose ||(A B) Λ (A C)| | is 1, i.e. ||A B| | = ||A C| | = 1. Then for all suf­
ficiently large α, |A|a < |B|a and for all sufficiently large α, |A|a < |C|a; so for all sufficiently 
large α, |A|a < |B Λ C|α; so ||A (B Λ C)| | = 1. (B6 is similar.)

D2: Suppose ||Vx(Ax Bx)| | = 1. Then there is an α such that (νβ > «)(|Vx(Ax Bx)|e = 
1), hence (νβ > o:)(Vt)(|At Bt|e = 1), hence (νβ > o:)(Vt)(|At|e < |Bt|e). Suppose
||VxAx VxBx| | < 1. Then for some β > α + 1, |VxAx VxBx|e < 1, so for some β > α, 
|VxAx|e > |VxBx|e; this is clearly incompatible with the above given that everything has a name.

D3: Suppose ||Vx(— Ax Ax)| | = 1. Then for all sufficiently large α, |Vx(— Ax Ax)|a = 1, 
so for all sufficiently large α and all t, |— At At|a = 1, so for all t and all sufficiently large 
α, |At|a > 2. So for all sufficiently large α, |VxAx|a > 1, and so for all sufficiently large α, 
|—VxAx|a < |VxAx|a, and so ||—VxAx VxAx| | = 1.
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system that Γ = A. So we have that if Γ -LCC A then Γ = A.

We can easily derive the deMorgan laws, in the strong form -LCC -(A V 
B) — -A Λ -B and its converse, and their analogues with Λ and V switched; 
also, the converse of A2.

And we have the following obvious metatheorem:

General Substitutivity Rule: Let A and B be any formulas with 
the same free variables, let Ψ a be any formula that contains A as a 
subformula, and let ΨΒ result from ΨΑ by substituting B for any 
number of occurrences of A. Then A B -LCC ΨΑ ΨΒ. In­
deed, if all substituted occurrences of A in ΨΑ are positive then 
A — B -LCC ΨΑ — ΨΒ; and if all are negative then A — B \-LCC 

Ψβ — Ψ a .9

(Given this, the intersubstitutivity of True((A)) with A follows from the truth 
schema; this seems of interest, even though the construction yields the inter­
substitutivity of True((A)) with A more directly.)

The significance of — in this system is partially clarified by the following 
theorem, three clauses of which require B3:

Theorem on — and D: Let A D B abbreviate - A V B. Then

(ia) A D B -lcc A — B;

(ib) (A V -A) Λ (B V -B) -lcc (A D B) — (A — B);

(iia) (A V -A) Λ (A — B) -lcc A D B;

(iib) (A V -A) Λ (B V -B) -lcc (A — B) — (A D B)

(If it seems odd that the excluded middle premises are required for (ib) but not 
for (ia), a glance at the value-table given at the end of Section 2 may help.)

Proof: It's useful first to note that B3 together with other rules yields 

B3#: -A -lcc A —— B.

For B3 gives - A -LCC -B — -A; which with A6 and B2 gives -A -LCC A — 
--B; but by B1 and B4 we get - (A — --B) — (A — B), so by B2 we get 
-A -lcc A — B.

9Proof: It suffices to consider a single substituted occurrence, and we prove the result for this 
case by induction on the complexity of the embedding of that occurrence. Trivial for the case where
Ψα is A. Suppose we've established that if A is positive in Θα then A B \~lcc Θα Θβ , and
if negative then A B \~lcc Θβ Θα; it follows that if A is positive in —Θα and hence negative 
in Θα then A B \~lcc Θβ Θα and hence A B \~lcc —Θα —Θβ; similarly when A 
is negative in Θα. If A is positive in Θα Λ C by being positive in the first conjunct: A B \~lcc

Θα Θβ, so A B Hlcc Θα Λ C Θβ using A4a and B4 (and B2); and Hlcc Θα Λ C C, so
A B \~lcc Θα Λ C Θβ Λ C using B5. If A is negative in Θα Λ C by being negative in the first 
conjunct: A B \~lcc Θβ Θα, so by an analogous argument A B \~lcc Θβ AC Θα ΛC. 
Disjunction (and second conjunct or disjunct) is similar. If A is positive in 7χΘα(χ) and hence in 
Θα(x): A B Hlcc Θα(χ) Θβ(x), so A B Hlcc ϋχΘα(χ) ϋχΘβ(x) using D1 and
C2. (Negative similar.) If A is positive in C Θα by being positive in the consequent, then A
B Hlcc Θα Θβ, so A B \~lcc (C Θα) (C Θβ) by B4; if A is positive in Θα C
by being negative in Θα, then A B \~lcc Θβ Θα, so A B \~lcc (Θα C) (Θβ C)
by the analog of B4 proved in note 4. (Negative similar.)
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Proof of (ia): B3 and its consequence B3# give both that B —LCC A — B 
and that — A —LCC A — B; so — A V B —LCC A — B by V-Elimination.

Proof of (ib): Applying B3 to the result of (ia), we get —A V B —LCc (A D 
B) —— (A —— B). Also A Λ —B — lcc —(A D B), so by B3#, A Λ —B — lcc (A D 
B) — (A — B). So by V-elimination, —A V B V (A Λ —B) —LCC (A D B) — 

(A — B); and since (A V —A) Λ (B V —B) —LCC —A V B V (A Λ —B), the result 
follows.

Proof of (iia): By distributivity, the premise is equivalent to [A Λ (A — B)] V 
[—A Λ (A —— B)]. But A Λ (A —— B) —lcc B —lcc A D B, and —A Λ (A —— 
B) — LCC —A — LCC A D B .So (iia) holds, by V-Elim.

Proof of (iib): By B3, A D B — (A — B) — (A D B). And A Λ —B —
— (A — B) by B2*, so A Λ —B — (A — B) D (A D B) by B3#. So by V-Elim,
—A V B V (A Λ —B) — (A D B) — (A — B); the result follows as in (ib). ■

The upshot of (ib) and (iib) is that there's no difference between — and 
D in contexts, like ordinary arithmetic, in which excluded middle is assumed 
to hold. (This fact marks a big difference between the conditional used here 
and that in [5]; only (iia) of the theorem is valid for that conditional.)10. More 
precisely:

Corollaryon— andD: ForanyformulaAofL+, letLEMA betheuniversal 
closure of A V —A. And for any formula C of L+, let AtLEMc be {LEMA 

A is an atomic subformula of C}. (For present purposes, A(t) does not count 
as a subformula of VxA(x) for terms t other than x.) Also, let C* be the result 
of replacing all occurrences of — by D (and, if you like, translating the result 
into the official language of —, V etc.). Then: AtLEMC —LCC C C* (where
this abbreviates (C — C*) Λ (C* — C)).

Proof: From (ib) and (iib) of the Theorem and the General Substitutivity 
Rule, we clearly get that {AtLEMA | A is a subformula of C} — LCC C C*. 
It remains only to show that LEM for the atomic subformulas suffices to get 
LEM for all subformulas, that is

Lemma: For any C, AtLEMc entails LEMA for any A that is a subformula 
of C.

Proof in footnote.11 ■
10The quasi-semantics of [5] involved an interpretation of in terms of derivability. When 

A is itself an arithmetical theorem, say 0 = 0, A B becomes in effect Provable((B)); 
taking B to be the Godel sentence invalidates (ia), (ib) and (iib). [(iib) becomes in effect 
Provable((Provable((G)) D G)), which is equivalent to Provable((G)) via either Lob's theorem 
or the equivalence of G to —Provable((G)).] (iia) is still valid on that semantics: given excluded 
middle, A B reduces on the semantics to □(A D B) where □ is the provability operator of GLS 
rather than of G. [For GLS and G, see [1]]

11Proof sketch: The claim is trivial if A is atomic. For negation, we must merely get from 
Vx1...Vxk(A V —A) to Vx1...Vxk(—A V ——A); but passing from A V —A to —A V ——A is ele­
mentary, and the quantifier rules allow the addition of the string Vxi...Vxk to premises and con­
clusion. The conjunction and disjunction cases are similarly easy. For universal quantification, we 
must getfromVx1...Vxk(AV—A) toVx1...Vxk-1(VxkAV—VxkA);forthisitsufficestogetfrom 
Vxk(AV—A) toVxkAV—VxkA. ButwecangetfromAV—AtoAV—VxkAusingC1andV-Elim; 
so we can get from Vxk (A V —A) to VxkA V —VxkA by the additional use of C2. For we must 
get from A V—A and B V—B to (A B) V—(A B); we can then add quantifiers to premise and
conclusion as above. But A Λ —B I----- i(A B) by B2*, and A D B H A B by theorem above,
and (AV—A)Λ(BV—B) H (AΛ—B) V(A D B);so (AV—A)Λ(BV—B) H (A B) V—(A B).
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Another important consequence of the theorem on — and D (this time re­
quiring only (ia) of the theorem) is:

Corollary on Explosion: A Λ —A —lcc B.

Proof: A V B —LCC —A — B, by (ia) of the theorem. From this and B2, 
we get —A, A V B — LCC B; using A3, we get —A, A — LCC B (which yields the 
above via B1). ■

Given this, it is easy to verify that the system can derive any Kleene-valid 
inference (if Γ =K A then Γ —LCC B); where an inference is Kleene-valid 
if whichever of the values 0, 1, 1 is assigned to each atomic sentence or con­
ditional sentence, the usual strong Kleene rules (taking quantifiers as substitu­
tional) give B the value 1 whenever they give each member of Γ the value 1.

And from this and the above we get that full classical reasoning, including 
the treatment of — as D, is available in any context in which excluded middle 
can be assumed. More precisely, if Γ is any set of formulas of L+, let AtLEMr 
be {LEMA | A is atomic and occurs in some member of Γ} and let Γ* be {C* | 
C e Γ}, where LEMA and C* are as defined in the Corollary on — and D. 
Then

Corollary on relation to classical logic: For any formula B of L+ 
and any set Γ of such formulas:

If Γ* =ciass B*, then Γ U AtLEMW{B} —lcc B.

Proof: Γ* is in the —-free language, and Γ* =class B*, so Γ* U AtLEMr —K 

B* (since as is well-known, Kleene logic plus excluded middle for the rele­
vant vocabulary yields all classically valid inferences in that vocabulary, and 
since the atomic subformulas of Γ* are the same as those of Γ). So by the 
observation after the corollary on Explosion, Γ* U AtLEMr —LCC B*. So 
Γ* U AtLEMru{B} —LCC B* U AtLEMB (i.e. each member of the consequent 
set is derivable from the antecedent set). But by the corollary on — and D, 
we have both that Γ U AtLEMru{B} —LCC Γ* U AtLEMru{B} and that B* U 
AtLEMB —LCC B; putting all these together, we get that WAtLEM^B} —LCC 

B. ■

The import of all of this is that we can take LCC as our general background 
logic, and simply add instances of excluded middle as ”non-logical premises” 
wherever it seems appropriate-for instance, in arithmetic, in physics, in set 
theory. This will legitimize full classical reasoning in those areas, including 
the treatment of — as D. Thus there is no need to worry that using LCC as the 
general background logic will cripple reasoning in any domain where excluded middle 
is legitimate.12

12A small caution about the application of this to theories that contain axiom schemas, for in­
stance, Peano arithmetic or ZFC: the assumption of excluded middle for the basic arithmetic or 
set-theoretic vocabulary does not suffice to ensure classical reasoning with regard to instances of 
the schemas that involve vocabulary outside of the arithmetic or set-theoretic vocabulary. (Con­
sider the set whose only member is 1 if the Liar is true and whose only member is 0 otherwise!)

A related point: some care is needed about the extension of arithmetic or set theory to include 
a truth predicate. For instance, in the arithmetic case, if we want to allow mathematical induction 
on formulas containing ‘True' (and we should want to!), then induction needs to be put as a rule
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Some non-laws: Certain laws that are valid for the classical ‘D' (and hence 
valid for ‘—' in the context of excluded middle) fail for ‘—' when excluded 
middle is not presupposed. In many cases, their failure is virtually inevitable: 
they will fail in any remotely reasonable system that yields the truth schema. 
Three laws that are inevitably invalid in this sense are:

Importation: A — (B — C) =? A Λ B — C 

Contraction: A — (A — B) =? A — B 

—-Introduction: From A = B infer? = A — B.

That Contraction fails is virtually inevitable if we are to save the truth 
schema, due to the Curry Sentence: a sentence K which is equivalent to True((K)) 
±, where ± is an absurdity such as 0= 1. For one can derive ± from True((K))
K using only very uncontroversial axioms plus Contraction; that's the Curry 
Paradox. (For discussion, see [5].) As noted in the next section, the values of K 
are as follows:

{2 whenever α is 0 or a limit 
0 whenever α is odd 
1 whenever α is an even successor

Given this, it is easily checked that for each α, |K — ±|α = |K |α, from which it 
follows that ||K — (K — ±)| | is 1 and ||K — ±| | is 2.

Taking A and B both to be K and C to be ± also gives a counterexample 
to Importation; not surprising, since Contraction is virtually identical to the 
special case of Importation with B set equal to A. (The initial impression of 
the complete obviousness of Contraction rests largely on the assumption of 
Importation.) And taking A to be K and B to be ± gives a counterexample 
to —-introduction; again not surprising, both because of a famous alternate 
form of the Curry Paradox using —-introduction instead of Contraction and 
because Contraction is easily derivable using two applications of modus po­
nens followed by an —-introduction. (Insofar as the initial impression of the 
complete obviousness of Contraction doesn't rest on the assumption of Impor­
tation, it probably rests on this derivation.)

K in fact can be used to provide counterexamples to a number of other 
classically-valid rules. For instance,

Permutation: A — (B — C) |=? B — (A — C)

Weak-Perm: =? (T — C) — C [where Τ is A — A, or 0 = 0]

rather than an axiom. We can use the strong rule 
F(0) AVn[F(n) F(n + 1)] = VnF(n)

rather than the weaker rule with 'D' in place of '^'. But we can then derive the induction axiom 
for predicates for which excluded middle holds, and we can replace with D there; so we get all 
of standard number theory. (Indeed, we can prove more besides, since an induction on the truth 
of theorems is now available in the theory, which will enable us to prove the Godel sentence of the 
'True'-free theory. But despite the availability of inductions involving 'True', we will not be able 
to prove the Godel sentence of the full theory containing 'True': the lack of excluded middle will 
prevent this.)
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I call the latter Weak Permutation since a special case of Permutation is (T — 
C) — (T — C) =? T — ((T — C) — C); by A1 this yields =? T — 
((T — C) — C), and by B2 that yields Weak Permutation. So it suffices to 
get a counterexample to Weak Permutation, and for this we just let C be the 
Curry sentence K. (T — K is equivalent to —K, so when α is odd |T — K|α 

is 1 and |K|α is 0, so when α is an even successor |(T — K) — K|α is 0, so 
||(T — K) — K11 = 1.) Again, Permutation may seem completely obvious, 
but I think that that impression rests on the assumption of Importation, and 
the additional assumption of its converse, Exportation.

Exportation (A Λ B — C |=? A — (B — C)) is invalid for similar reasons. 
Here, let A and C be the Curry sentence K and B to be T; the premise K Λ T — 
K is obviously valid, but the consequent K — (T — K) is not: it's value at 
stage α is 0 whenever α is odd and neither 1 nor the successor of a limit, so 
||K — (T — K )|| = 1.

In addition, consider the ”conditional strengthenings” of all the B and D 
rules other than B1 and D1. (I exempt D1 because in that case the failure of 
the strengthening is unsurprising.) The strengthening of B3 would be |=? A — 
(B — A). Take A to be the Curry sentence K and B to be T. The instance in 
question, then, is =? K — (T — K), which we've just seen is invalid.

Indeed, the ”conditional strengthening” of B3 fails even in the special case 
(A — C) — (A — (A — C)): Take A to be T, C to be K. Since T — K is 
effectively equivalent to K, this reduces to the previous counterexample.

The strengthening of B4 (and B4*) would be =? (A — B) — ((B — C) — 
(A — C)). Take A to be K and B and C both ±. We get =? (K — ±) — ((± — 
±) — (K — ±)), which is in effect =? (K — ±) — (T — (K — _L)). Since 
as remarked above |K — ±|α is always the same as |K|α, this is effectively 
equivalent to =? K — (T — K), which we've already seen to fail.

An alternative strengthening of B4 would be |=? (A — B) Λ (B — C) — 
(A — C). Let A be T, B be K, C be ±. We get =? (T — K) Λ (K — ±) — (T— 
±). At any limit ordinal, the antecedent gets value | and the consequent value 
0, so the conditional has value 0 at every successor of a limit and consequently 
can't have ultimate value 1.

The strengthening of the B5 rule would be |=? ((A — B) Λ (A — C)) — 
(A — (B Λ C)). Let A be T, B be K and C be T — K. Then B Λ C is 1 at 0 
and limits, 0 otherwise, so A — (B Λ C) is 0 at stages above 0; but A — B and 
A — C are both 1 at all limits. The strengthening of B6 is similarly invalid.

The most obvious strengthening of B2 is |=? (A Λ (A — B)) — B; taking A 
to be T, this is in effect weak permutation, and fails when B is K.

The failure of the strengthening of B4 entails failure of the corresponding 
strengthening of D2 (=? Vx(Ax — Bx) — (VxAx — VxBx)). The strength­
ening of D3 ( =? Vx(—Ax — Ax) — (—VxAx — VxAx)) also fails. For let A(t) 

always be either K or —K, with some of each. Then VxAx has value 0 at succes­
sors, 1 at 0 and limits, and so —VxAx — VxAx has value 0 at limits not divisible by ω2. But for each t, —At — At alternates between 0 and 1 at successors, so 

is 1 at all limits, so the same is true of its universal quantification. Since there
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are arbitrarily high limits not divisible by ω2, there are arbitrarilyhigh limits at 

which the value of the antecedent is greater than that of the consequent.

Another rule whose failure is almost inevitable-though in this case the ar­
gument for the failure requires the Explosion rule A Λ - A = B, which as we've 
seen is a consequence of B3—is

Pseudo-reductio: A — -A |=? -A.

(Axiom A7 does yield a weaker version of this.) In any reasonable system 
with Explosion, Pseudo-Reductio must fail because of the Liar paradox (if the 
system is not to be trivial in the sense of having every sentence as a theorem). 
For if L0 is a sentence that asserts its own untruth, L0 — -L0 and -L0 — L0 
must be theorems in any theory that includes the Tarski biconditionals; but 
the latter together with -L0 leads to L0 Λ -L0 by B2 and B1, and hence to any 
absurdity you like; so the inference from L0 — -L0 to -L0 must fail, iftriviality 
is to be avoided. As noted in the next section, the Liar sentence has value 2 at 
each level, which gives L0 — -L0 the value 1 at levels > 0 while -L0 has value 
2
2 .

The Liar sentence also shows the invalidity of 

A — -B |=? -(A — B) 

and

-(A — B) |=? A — -B:

in the first case, take A and B to be L0, and in the second case take A to be Τ 
and B to be L0.

5 Transfinite hierarchies of paradoxes: a first step 
toward defusing the ”revenge problem”

The most famous paradoxicalsentence(and onethatis particularlyeasyto deal 
with since it doesn't involve the —) is the Liar sentence L0, which in effect as­
serts its own untruth. Officially, it has the form 3w[SA(w, k) Λ -True(w)], where 
k is the standard name of 3w[SA(w, v2) Λ -True(w)] and SA is the arithmetical 
formula for "self application”. But for all α, |SA(t, k) |α is 1 if den(t) is the Godel 
code of L0 and 0 otherwise, so by the Kleene rules, |L0|α is 1 — |True((L0))|α 

for each α. Since |True( (A)) |α always has the same value as |A|a, for any A and 
α, we have that for all α, |L0|a is 1 — |L0|α; i.e., for all α, |L0|α is 2 (and hence 
|True((Lo))|α and |-True((Lo))|α are 2 too).

Let's also consider the Truth-teller sentence T0, which attributes truth to it­
self. The Tarski truth schema would be satisfied by assigning any of the three 
semantic values to it. But the semantics dictates that it gets value 2: for nei­
ther it nor its negation are in the minimal fixed point at level 0, and since the 
sentence doesn't contain an — its value is not affected by later stages.

Presumably it is incorrect to assert sentences with values less than 1, so it 
is incorrect to assert that the Liar is true, and also incorrect to assert that it is not
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true. One should not object that it must be either true or not true, and therefore 
must be correct to assert one or the other; for it is incorrect to assert that it is 
either true or not true. (Similarly for the Truth-teller.) Let's define ‘false' as ‘has 
a true negation', and ‘lacks truth value' as ‘is neither true nor false', and ‘has at 
most one truth value' as ‘is not both true and false'. Then it is also incorrect to 
assert of either the Liar or the Truth-teller that it lacks truth value; or that it has 
truth value; or that it either has or lacks truth value. (Note this well: this is not 
a theory that postulates ”truth value gaps”.)13 It is likewise incorrect to assert 
of either the Liar or the Truth teller that it has at most one truth value, or that 
it doesn't have at most one, or that it either has at most one or doesn't have at 
most one.

Does this mean that the ”singular” status of the Liar and the Truth-Teller 
can't be stated in the language (but only in the set-theoretic metalanguage 
where we talk about semantic values)? No: we can capture it perfectly well 
within the language, by defining a ”determinately operator”. The definition I 
propose is: DA abbreviates (T — A) Λ A.

Note that B3 gives the inference rule A H DA, and that the converse holds 
in the strengthened form H DA — A. (If all we wanted was the unstrengthed 
form, there'd have been no reason to build the 2nd conjunct into the definition 
of DA.)

This operator will be of much concern in what follows, so let's note the 
values it takes on at (super-)stages. Applying the rules for —, we get:

f 1 \ A \α = 1 and (3β < α)(νγ e [β, α))(\A \γ = 1)
\ DA \α = 0 \ A \α =0 or (3β<α)(νγ e [β,α))(\A \γ = 1)

[ j otherwise 

As special cases we get:

DA 0=
0 if A 0 = 0 
1 otherwise.

DA β+1 =
A β+1 if A β=1

0 otherwise; that is, 0 iff either A β+1 = 0 or A β = 1

Observations:

(a) for all α, \ DA \α < \ A \n;

(b) If A is a conditional, then DA λ = 1 iff A λ = 1 (where λ is a limit);

(c) For all A, \ DA \ Δ = 1 iff \ A \ Δ = 1 (where Δ is an acceptable point);

(d) If there is an α < β such that for all γ in [α, β], A γ < B γ, then 
DA β< DB β;

(e) For all α, D(A Λ B) α < min{ DA α , DB α}

131 have already cautioned against equating having semantic value 2 with being neither true 
nor false. If you think that the fact that sentences like the Liar get value 2 in the formal semantics 
means that we are nonetheless in some sense postulating a truth value gap, read on: I believe that 
the rest of the paper undermines this (so far very vague) suggestion.
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The left to right of (b) and (c) come from (a); the valuation rules for — yield 
the right to left of (b). And the right hand side of (c) implies that ||A| | = 1 by 
the Fundamental Theorem, which implies that ||DA| | = 1, which implies that 
|DA|a is 1. (d) is evident from the valuation rules for D. (e) follows from (d) 
when α > 0, and is evident (even in strengthened equality form) for α = 0. ■

Note that even at Δ, we needn't have equality in (e): |D(A Λ B)|Δ can be 0 
when |DAh and |DB|A are each 2. (Take A to be the Curry sentence K, B to 
be -K.)

Returning to the Liar sentence L0, we now observe that |DL01α is 0, for any 
α > 0; in particular, |DL0|Δ is 0, so |-DL0|A and |-DTrue((L0))|A are 1. So 
though we can't assert that L0 isn't true, we can assert that it isn't determinately 
true. Similarly, we can assert that its negation isn't determinately true either; 
i.e., that the Liar itself isn't determinately false. Similar remarks apply to the 
Truth-teller T0.

Once we have noticed the notion of determinateness, it naturally occurs to 
us to consider an extended Truth-teller sentence T2, which asserts of itself that 
it is determinately true; and an extended Liar sentence L2, which asserts of 
itself that it is not determinately true. One might guess that T2 would come 
out with value 2, on the basis of some sort of principle of indifference; but in 
fact it gets value 0. Reason: |DT2|0 is clearly either 0 or 2 by the valuation 
rules,14 so |T2|0 must be the same. This means that |DT2|2 is 0; so |T2|2 must be 
0. It is evident that at all levels the values of DT2 and T2 remain at 0.

In the case of the extended Liar, we require that for each α,

(*) |L2|* = 1 — |DL2|a.

How is this possible? (We know that it is possible, because D has been de­
fined in the language L+, and we have given a semantics for L+ that validates 
number theory and gives the equality of and Ψ(Λ) within each
super-stage.) Clearly there is no α forwhich |L2 |α is 0, for then (*) would yield 
that |DL2 |α is 1, in violation of Observation (a). Also, when |L2 |α is 2, |DL2 |α+2 
is 0 by the evaluation rules, so |L2 |α is 1 by (*); and when |L2 |α is 1, |DL2 |α+2 is 
|L2 |α+2 by the evaluation rules, so |L2 |α is 2 by (*). |DL210 is min{2 ,|L210} by 
the evaluation rules, so by (*) it must be 2; and an easy induction shows that 
the value at limits is always 2 as well. In short: whenever Ζ is 0 or a limit and 
k is finite (possibly 0), |L2|z+2k = 2 and |L |z+2k+2 = 1.

In particular: |L2 |Δ = 2 ; so by (*), |DL2 |Δ is 2 also. So not only can't we 
assert -True((L2)), we can't assert -D(True((L2))) either. That might seem like 
a defeat. However, we can assert that L2 isn't determinately determinately true. 
For DDL2 (which I'll abbreviate D2L2) takes value 0 at all successor ordinals; 
this suffices for its taking value 0 at limits as well, i.e. for |1-D2L2| | and hence 
||-D2(True((L2)))| | tobe1.

||-D-L2| | is already 1: we don't need to go to the second level in that case. 
So the moral about L2 is: it isn't determinately false, and it isn't determinately

14In fact it's 1, since we've used the minimal fixed point at each stage.
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determinately true.15 This seems to be fully capture the sense in which it is 
”defective”.

Transfinite iteration: Once we have the operator D, we can iterate it, and 
get generalized Liar sentences corresponding to each iteration. The finite iter­
ations are clear: D0A is just A; Dn+jA is D(DnA). At the wth level, we must 
get the effect of an infinite conjunction of the DnA, within the resources of the 
finite language L+ in which we're working. Since we have a truth predicate 
for which True((B)) is intersubsitutable with B for every B, this is fairly easy. 
Let D-Iterate(y, n, x) be an arithmetical formulation of the relation of y being 
the result of prefixing n occurrences of D to a sentence with Godel code x. We 
can then define D-Iteratew (y, x) ("y is the wth D-iterate of x") to be (the Godel 
code of) the sentence VnVy[D-Iterate(y, n, x) D True(y)]; we then take /OA to 
be the (sentence whose Godel code is) the ωth D-iterate of A. It is routine to 
check that for each α, \ /F A \ α is the minimum of {\ DnA \ α \ n < ω}.

And now we can extend further. For each finite k > 0, /b'"k A is defined 
as Dk(/λωA), and Dω+ω (i.e. /λω2) as /λω (/λωA); clearly we can continue in 
this way to get DnA whenever α < ω2. And we can go to ω2 too, this time by 
defining in arithmetic the relation /λω-Iterate(y, n, x) meaning that y is the re­
sult of prefixing n occurrences of D to a sentence with Godel code x, and then 
defining /λω -Iteratew (y, x) in analogy with the above. It is straightforward to 
extend the technique to give Dn for any α < e0, where at each limit we meet 
the following

Adequacy Condition: for each α, |DAA| is to be the minimum of 
{ \DgA \α\ σ < λ}. α

Extension to e0 or beyond requires more complicated devices, but is pos­
sible if the ground language L contains sufficient resources. However, well- 
known results on the theory of ordinal notations (see [11] Ch. 11) make clear 
that we cannot extend beyond the recursive ordinals (a "small" subset of the 
countable ordinals) on any satisfactory extension procedure; indeed, since a 
"satisfactory extension procedure" is presumably univalent and recursively re- 
lated,16 we can't even get all of the recursive ordinals. (For essentially the same 
reason, we cannot define a single notion of Dg for variable σ; the construction 
of the different Dg is highly non-uniform, becoming more and more compli­
cated for larger σ.) In what follows I will leave the details of the extension 
procedure and how far it extends unspecified; whatever the details, the set of 
σ for which Dg is defined will be of form {σ \ σ < λ0}, where λ0 is some 
recursive limit ordinal.

Generalized Observations: the "Observations" (a)-(c) and (e) of several 
pages back remain true when ‘D' is replaced by ‘Dg', for any σ < λ0; similarly 
for (d) if we replace the condition that α < β by the condition that α + σ < β. 
(Proof: transfinite induction based on the previous "Observations", using the 
fact that at each λ < λ0, |DAA|n is the minimum of {\ DgA \α \ σ < λ}.)

15It's not being determinately false implies, of course, that it is also not determinately determi­
nately false.

16That is, any ordinal with a notation has a unique canonical one, and there is a mechanical 
procedure for telling of two canonical notations which stands for the smaller ordinal. If the system 
of notation failed to meet the first condition, we would really have no business talking about the 
//T for ordinals σ, but rather about the Dv for various ordinal notations ν.
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I will now show that the construction of the D' do es not terminate: for ev­
ery σ < λ0, there are A such that |D'A^ is 2 and yet |D'+1A^ is 0; hence, for 
which — D'+M is correctly assertable, while —D' A isn't. {7/TTrue(x) | σ < λ0} 
is thus a sequence of ”stronger and stronger truth predicates”, with no strongest 
(since Dq is not defined). (For σ > 0, we may not want to call them "truth 
predicates”, since only True(<A)) is intersubstitutable with A for all A.) It's im­
portant to emphasize that these are all in the object language: no ascent to stronger 
and stronger metalanguages is required.

To see that the D''s become successively stronger, it suffices to consider 
for each σ < λ0 the corresponding generalized Liar sentence Λσ. Λσ is just 
3w[SA(w, k) Λ —D'True(w)], where k is the standard name of 3w[SA(w, V1) Λ 
—D'True(w)]; so Λσ is equivalent to —D'True(<L')), and so by the properties 
of the truth predicate that we have demonstrated,

(**) For each α, L |α = 1 - |·ΟσL ' |α.

I now show:

Theorem on Transfinite Liar Hierarchy: For each σ < λ0,

(a) |D'Λσ |δ = 1;
(b) For all α > 0, |ΰσ+1.δσ|α = 0;

(c) For all α > 0, | D—Λσ|α =0 (hence |D'+1—LCT|α = 0).

Proof: (b) By (**) and Generalized Observation (a), |£σ |α can only be 2 or 1; 
so by (**) again, |D' Λσ|α can only be 2 or 0; so for all α > 0, |D'+1Lct |α = 0.

(a) As just noted, |LCT |Δ can only be 2 or 1. But if it were 1, then by General­
ized Observation (c), |D' Λσ |Δ would be 1 also, violating (**). So |LCT |Δ is |, so 
by (**) |D' /.· |δ is 1.

(c) By (**), ·Λ· |α = D' Λ· |α. So |D—LCT|α = |D'+1LCT|a;by (b), that's 0 for
α > 0. ■

Let's define a sequence of predicates Nσ (for σ < λ0; ‘N' can be read as 
”nonfactual”) by:

Νσ(x) iff SENT(x) D'(True(x)) Λ —D'(False(x))).

From (a) and (c) of the Generalized Observations, we get that when σ < ρ, 
||NP(<A>) 11 > ||Nσ((A)) 1|, and that a strict inequality can occur only when 
the first is 1 and the second 2. Our observations on the Liar sentence are that 
||Νσ(<Lct))| | is 2 and ||N'+1(<LCT))| | is 1, so we have that as σ increases these 
non-factuality predicates get ever more inclusive in their positive extension for 
as long as they are defined (i.e. up to λ0), and that each of the generalized 
Liar sentences is eventually in the positive extensions. And these predicates 
are all present in the object language, definable via set theory from the truth 
predicate, using the ‘—'.

Illustrative details: That completes the main point of this section, but it is 
instructive to see a few illustrations of what values various paradoxical sen­
tences assume at various stages.
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First, what are the values of the generalized Liar sentences Λσ ? (The answer 
to this will prove something that may be important: that any acceptable Δ is at 
least λ0.) The values are as follows: for any σ < λ0 and any α,

L | α
2 whenever α is of form (1 + σ) · τ 
1 otherwise.

We've already seen that this satisfies (**) in the σ = 0 case (the ordinary Liar, 
which has value | for all α). For σ > 1: let rm(«) be the remainder of α on left- 
division by 1 + σ; that is, the unique ρ < σ such that α is of form [(1 + σ) · τ] + ρ. 
We can show, by induction on β, that

(***) for any β in [0, σ] and any α,

2 when rm(tt) = 0;
0 when 1 < rm(tt) < 1 + β;
1 when 1 + β < rm(«) < 1 + σ.

(Proof in footnote.)17 Once this is established, then taking β to be σ we get

|DO /-■ | α
2 whenever α is of form (1 + σ) · τ 
0 otherwise;

that is, 1 — |£σ |α, as required.

Since for each σ < λ0, Λσ doesn't reach its final value until stage σ +1, any 
acceptable ordinal must be at least as big as σ + 1 for each σ + 1 < λ0; that is, it 
must be at least λ0.

The two-dimensional Curry Hierarchy. I now consider the Curry paradox, 
and generalizations of it. The standard Curry sentence K (which I will also 
write as K0,2) asserts of itself that if it is true then ±, where ± is some absurdity. 
So for any α, |K|α = |K — ±|α. It is easy to see that this requires that |K|α is 
2 when α is 0 or a limit, 0 when α is odd, 1 when it is an even successor. 
|K — ±|α comes out having the same values, as required. |DK|α is 0 except 
at 0 and limits, where it is 2. (Note that it is not continuous at limits until ω2.) D2K is 0 after stage 0.

There are several ways in which we might generalize this. One is analogous 
to what we did with the Liar: we consider a sentence that asserts of itself that

17Establishing (***) by induction: (I) For β = 0, (***) reduces to the description of |/σ|α. (II) 
Successors. Suppose it holds for β = γ, where γ < σ. To establish it for β = γ + 1, we must deal 
with three cases. Case 1: rm(a) = 0. The induction hypothesis says that |DY/σ |α is 2; so to show 
that |DT»L, |q is 1, we merely need to show that for any δ < α, there are ρ in [δ, α) for which 
|DY/σ|p is 1. This is trivial for α = 0. Otherwise, write δ as (1 + σ) · μ + υ, where υ < 1 + σ. 
Since α is (1 + σ) · τ, μ < τ; and since γ<σ, 1 + γ < 1 + σ, so (1 + σ) · μ +1+ γ<α. But 
the induction hypothesis also says that whenever ρ > 1 + γ, |DY /σ | (1+σ) ·μ+ρ is 1; so letting ρ be 
max{u, 1 + γ}, we have the desired ρ in [δ, α) for which |DY/σ |p is 1. Case 2: 1 < rm(«) < γ + 1. 
Then |DY+^|a is 0: for all values of rm(a) except for γ + 1, this follows from the fact that 
|DY /σ |α is 0; and when rm(«) is γ + 1, |Dy'+1Li7 |α is 0 since then α is δ + 1 for a δ for which 
rm(i) is γ and hence |DY/σ |δ is 0. Case 3: γ + 1 < rm(«) < σ. Then |Dy'+1Li7 |α is 1, since 
for all δ in [γ + 1,α) and also for δ = α, |DY/σ |δ is 1. (ill) Limits. Suppose (***) holds for all 
β < λ, where λ is a limit <σ. By the adequacy condition on treatment of limits, | DA /.·σ |α is 
min{|De/σ | | β < λ}; by induction hypothesis that's 2 iff rrajo) is 0, and it's 0 iff for some
β < λ, 1 < rm(«) < 1 + β, that is, if 1 < rm(«) < 1 + λ(= λ).
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if it is Dσ-true then ±. Call that sentence K^. Another way to generalize is 
to iterate the conditional. For each k, define A —k B as follows: A —0 B is B; 
A—k+1BisA—(A—k B). We can also extend this into a portion of the trans­
finite, taking A —λ B to be the "infinite disjunction" of the A —ρ B for ρ < λ, 
using the same technique for defining infinite disjunctions as before.18 (We can 
either include or exclude the ρ = 0 case in the disjunction; it won't matter in 
the case of the Curry sentences, where B is ±.) A further generalization of the 
Curry sentence, then, is a sentence K^p that asserts DσTrue((K^p}) —ρ ±. In 
the case where ρ = 0 there is no air of paradox: each K^p isjust ±. When ρ > 0, 
these all present distinct paradoxes, tending to become "more paradoxical" as 
σ and ρ increase. Even sticking to the case where σ = 0, there is no solution 
(consistent with the intersubstitutivity requirements on truth) for ρ = 1 within 
classical logic; there is none for ρ = 2 within Lukasiewicz 3-valued logic; and 
when ρ is infinite there is none within Lukasiewicz continuum-valued logic.19 
But again, the result of Section 2 guarantee that these (and the ones with σ > 0 
as well) are all consistently evaluable in the present semantics.

I leave to the reader the full investigation of what values the various K^p 

sentences take on at various stages, and what the various values are of Dσ K^p — 
± and of DeK^p and De-K^p. But the following are easy to check:

(1) K0,k α

j if α is 0 or a limit
0 if α + 1 is a multiple of k + 1 but not a limit;

that is, if α is of form k + n(k + 1) or λ + k + n(k + 1)
1 otherwise

(Explanation: for each finite j e {1,..., k}, we can show that |K0,k —j ±|n is j 
if α is 0 or a limit; 0 if for some m < k — j, α +1 + m is a multiple of k +1 but 
not a limit; 1 otherwise. Taking j = k, we get that |K0,k —k ±]n is \ K0,k \ n, as 
desired.)

So |DkK0,k|n and \ D-K0,k \ α are 2 at 0 and limits, 0 everywhere else; so 
|Dk+jK0,k |n and |D2-K0,k|n are 0 whenever α > 0. Thus Nk+j((K0,k}), for 
finite k other than 0.

(2) \ K),w \ α

2 if α is 0 or a limit that is divisible by ω2 
0 if α is any other limit 
1 otherwise

(Explanation: for each finite j, |K0>W —j ±| has the same value at limits as 
\ K),w \ α; if k > 0 then its value at level k, or λ + k when its value at λ is 2, is 1 if 
k < j, 0 if k > j; and its value at λ + k, when its value at λ is 0, is 1 if k < j, 0 
if k > j. \ Ko^ —ω ±\ α is in effect the infinite disjunction of the \ Ko^ —ω ± \ α, 
which is \ K0,w \ α as desired.)

So \ /ίωKo^ \ α and \ D-Ko^ \ α are 0 except at 0 and limits divisible by ω2, 
where they are 2; so |Dw+1Ko,w|α and |D2-Ko,w|α are 0 for all α > 0, so

)). ’ α ’ α

18This transfinite extension isn't very natural in the general case: we don't in general have 
(A ^k B) (A ^k+1 B), so why should we go to disjunction in the limit? However, it is 
easily proved by induction that we do have (A ^k B) (A ^k+1 B) in the case where B is ±, 
so the use in the context of the Curry paradox is quite natural.

19For the latter result, see[10]or[7].
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In addition to the two-dimensional hierarchy of Curry sentences, we could 
also consider modified Curry sentences where instead of the consequent 0 = 1 
we use another unassertable sentence: for instance, something in the hierar­
chy of Liar sentences, or another Curry sentence, or whatever. But enough's 
enough.

6 Ultimate revenge?

It is widely thought that any proposed solution to the Liar paradox faces a 
”revenge problem”: a new paradox, analogous to the Liar, that remains unre­
solved. The general method of constructing such new paradoxes, for solutions 
to the old paradoxes that involve a logic based on an extension of Kleene se­
mantics, is to argue that we ought to be able to include in the object language 
an operator D*, where D*A (or D*True(<A))) means ‘A has value 1'. We then 
argue, either on semantic or on inferential grounds, that the inclusion of such 
an operator within the language would lead to a new ”hyper-paradox”: a sen­
tence for which the truth schema is not satisfiable.

Semantically, the argument is that D*A should have value 1 when A has 
value 1, and should have value 0 when A doesn't have that value; and that 
excluded middle should hold for attributions of semantic value (since such 
attributions are made in a classical metalanguage), so that D*A always has 
value 1 or 0. (We also assume that no sentence can have more than one value.) 
But if D* were included in the language, there would be a sentence L* that 
asserts —D*True(<L*)), and hence would be equivalent to —D*L* if the naive 
truth theory holds. But then the value of D*L* would be 1 iff it's 0 and 0 iff 
it's 1; and it's either 1 or 0 and not both, so (using disjunction elimination) 
this yields a contradiction. So we can't consistently assign a semantic value to 
D*L* without violating the truth schema.

Inferentially, the claim is that D* should be such that both the inference 
from A to D* A and its converse are valid, and in addition D*A V —D* A should 
be valid (since it is a correct principle of the classical metalanguage). But again, 
L* causes a problem. For from D*L* we can infer both L* and —L*, hence we 
can infer anything; similarly, we can infer anything from —D*L*, since —D*L* 

implies L* which implies D*L*. But then (by disjunction elimination) we can 
infer anything from D*L* V —D*L*; and we've assumed that instance of ex­
cluded middle valid, so our principles are hopelessly inconsistent as applied 
to sentences containing any such D*.

One possible conclusion from this is that our principles are of only limited 
validity: theconstruction of Section 2 shows that they apply unproblematically 
to restricted object languages, but the claim is that when we try to incorporate 
the metalanguage within the object language we need to restrict our rules and 
modify our semantics. Such a conclusion would be disappointing. I will argue 
that there is no basis for such a conclusion, and that the lessons of the attempt 
to produce a hyper-paradox are very different.

Before arguing this, I pause to note that we have defined within the lan­
guage a whole class of operators D' that have some of the features of the D* 

above. Semantically, for each σ, D' A always has value 1 when and only when
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A does; but it need not have value 0 when A has a value other than 1. Inferen­
tially, each D' A is interderivable with A; but excluded middle is not valid for 
any such D'.

Of course, it is no surprise that we can't produce in the language an op­
erator with the features required for a hyper-paradox, for the construction in 
Section 2 shows that no paradox is actually producible in the language (that is, 
it shows that the naive truth theory is satisfiable in the language). What the 
proponent of hyper-paradox claims is (to put it vaguely) that it is only because 
of an expressive limitation of the language that paradox has been avoided. Is 
there any basis for this charge?

One unpromising approach to substantiating the charge would be to focus 
on the fact that although we can define each of the D' within the language, 
we cannot define their "infinite conjunction" DA". Let's grant, for the sake of 
argument, that the ”infinite conjunction” of these is intelligible, so that the inex- 
pressibility of such an infinite conjunction in the language is indeed a genuine 
expressive limitation of the language.20 If we grant this, then we can imagine 
a more powerful language that includes a "superdeterminately" operator DA", 
together with the noneffective set of principles that is required to ensure that 
it works like an infinite conjunction of the previous D's; this more powerful 
language contains a "super-Liar" sentence that says of itself that it is not super­
determinately true. But in such a more powerful language, we should be able 
to reason analogously to the way we've reasoned already, to show that such 
a sentence is not paradoxical: the claim that it is not superdeterminately true 
would be neither assertable nor deniable, but we could assert that it is not deter­
minately super-determinately true, i.e. not DA"' 1 -true. In other words, there's 
no reason to think that overcoming expressive limitations in this way would 
change anything important, so there's no reason to think that it is only through 
expressive limitations that paradox has been avoided.

The basic defect of the approach to hyper-paradox in the previous para­
graph (and more complicated approaches that iterate the approach in the previ­
ous paragraph) is that there is no reason whatever to think that the expansions 
of the language they envision will meet the conditions required for a hyper­
paradox: a paradox not soluble along just the same lines as the paradoxes that 
are handled within the language. In particular, there is no reason to suppose 
that the value of DA" A should be 0 whenever the value of A is 2, which un­
dermines the semantic argument for hyper-paradox; and there is no reason to 
suppose that excluded middle should hold for sentences of form DA" A, under­
mining the inferential argument as well. If excluded middle did have to hold 
for such sentences (and in addition we could infer from DA" A to A and con­
versely, and reason by disjunction-elimination), then the introduction of DA" 

would give rise to the inferential form of the hyper-paradox, and it would in­
deed be the case that only expressive limitations were preventing a violation 
of the truth schema. But there's no reason for thinking that excluded middle 
should hold for such sentences.

20There might be grounds for doubting what I'm granting: the non-uniformity of how the dif­
ferent D'T are constructed, which precludes introducing σ as a quantifiable variable, might give 
some reason to doubt that we really grasp the infinite conjunction. But I wouldn't want to press 
that point.
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But what I've just said simply shows that it was a mistake to try to use such 
a DA° for the hyper-paradox. The hyper-paradox as originally sketched was in 
terms of an operator D* defined directly in terms of semantic value. We have 
defined semantic values for our sentences in a classical set-theoretic metalan­
guage, a metalanguage for which, we are assuming, excluded middle holds. 
Doesn't this show that we ought to be able to expand the object language so as 
to incorporate this classical metalanguage, enabling us to define an operator or 
predicate corresponding to 'has semantic value 1', for which a hyper-paradox 
is bound to arise?

I think this thought is an illusion. The first point to notice is that the con­
struction of Section 2 was all done within ZFC (Zermelo-Frankel set theory 
with choice), and I was careful to insist that the object language L from which I 
began (before I added 'True' and '—') was any classical language that included 
arithmetic and the general theory of finite sequences.21 In particular, I allowed 
the language L to be the language of ZFC (or any classical expansion of that, 
e.g. to include the language of physics). If that is the L from which we start, 
and if the arithmetically standard model M from which we start is definable 
within L (as will be the case for the most natural choices of M, e.g. for all inner 
models), then there is no need to use a broader classical metalanguage to do 
the semantics; we can use L itself. Thus the classical metalanguage is not an 
expansion of the object language, it is in fact a sublanguage of the nonclassical 
object language L+, it is the part of the object language that doesn't include 
'True' and '—'. (The sublanguage is classical in that excluded middle is explic­
itly postulated to hold in it.)

If that's so, the question naturally arises: how have we avoided paradox? 
If the metalanguage is included in the object language, then we can construct 
within the object language a sentence that says of itself that it does not have 
semantic value 1. Since this metalanguage is a classical part of the object lan­
guage, we are assuming excluded middle for it; so haven't the preconditions 
for paradox been met?

No. The reason why they haven't becomes clear when we reflect on Tarski's 
theorem about the impossibility of defining within a classical language a pred­
icate that satisfies the requirements of a truth predicate for that classical lan­
guage. The theorem shows that the predicate 'has semantic value 1' that we've 
defined within set theory (when the starting model M is so definable) doesn't 
give a reasonable notion of truth even for the set theoretic language itself, let alone 
for the expanded nonclassical language that results from adding 'True' and '—' 
to it. (Nor does it give a reasonable notion of determinate truth for the set the­
oretic language: indeed, there is no obvious reason to distinguish determinate 
truth from plain truth, for sentences in a classical language, which is what we 
are assuming the set-theoretic sublanguage to be.) More fully, Tarski's argu­
ment shows that on any set-theoretic definition of 'has semantic value 1', there 
will always be a sentence S in the set-theoretic language itself (i.e., one not 
containing 'True' or '—') for which we can prove

21By a ”classical language” I mean simply one for which classical reasoning is appropriate. 
Strictly speaking, the term 'classical' could be dropped from the sentence in the text: but since 
we considered only classical models for the langage, the construction in Section 2 would be unnat­
ural if the starting language were not classical in the sense just given.
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[((S) has semantic value 1) Λ—S] V[S Λ — ((S) has semantic value 
1)].

It is clear from Tarski's theorem, then, that no notion of semantic value that is 
defined within the classical sublanguage can possibly coincide with the intuitive 
notion of truth (or determinate truth), even restricted to that classical sublan­
guage. This doesn't show that we can't introduce a notion of truth or deter­
minate truth that works when restricted to the classical sublanguage: we can 
certainly introduce such notions axiomatically (and I've in fact argued that we 
can introduce reasonable notions of determinate truth definitionally, if we start 
from an undefined notion of plain truth). The problem is simply a limitation 
in definitions of truth or determinate truth from a basis that includes no such 
notion.

Tarski did, of course, show how to literally define a notion of truth in a 
model, where a model is an object within the universe of sets: the domain of 
any model M is a set, and since (according to the set theory presupposed in 
Tarski's definition) there is no set of all sets, no model can include everything in 
its domain.22 What Kripke showed was how to extend this definition of truth- 
in-a-model in a natural way to a larger language, one containing ‘True'; what I 
showed in Section 2 was how to further extend it to a still larger language that 
contains a new conditional. But it is important to be clear that what is being 
defined is not ‘true', but ‘true in the starting model M ': that's why I made a 
point of not calling the defined notion ‘true', and using instead the phrase ‘has 
semantic value 1'. Semantic value, in the sense I've defined it (and in the sense 
in which Tarski or Kripke define such notions), depends on the starting model 
M. That's why I (and Kripke before me) considered languages in which ‘True' 
was an additional undefined term.23

We can do a lot to ensure that the model M we start with is an extremely 
"natural" one: for instance, if our basic theory is an expansion of ZFC that 
postulates inaccessible cardinals (or hyper-inaccessible cardinals, etc.), then we 
can take as our starting model M the set of all sets of accessible (or hyper­
accessible, etc.) rank (i.e. of rank less than the initial ordinal of the first such 
cardinal), with the standard membership relation. If we do this, and let ‘has 
semantic value 1' as applied to set-theoretic sentences just mean ‘is true in M' 
in the Tarskian sense, then for any sentence A all ofwhose quantifiers are restricted 
by the condition ‘has accessible rank', we can prove

(A) has semantic value 1 if and only if A.

22One could give a Tarskian definition of truth in a model in a theory that allows for proper 
classes, but (assuming we keep excluded middle for the theory of proper classes) this wouldn't 
alter much: while we could define true in M where M is a proper class model that includes all 
sets, there is still no proper class model that includes all classes, so what we've defined still won't 
be truth, if the proper class theory in which we give the definitions is true. So we may as well just 
stick to sets.

23Kripke's own presentation is a bit misleading on this score: indeed, he insists that he is offering 
an explicit definition of a truth predicate, and criticizes those who offer less. But in fact what 
he explicitly defines is only truth in a model; that is all that one could hope to explicitly define, 
given Tarski's undefinability theorem. (The nonclassicality of the language doesn't evade Tarski's 
theorem, since the language contains a classical part with the strength required for the theorem to 
apply.)
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In other words, for sentences with quantifiers so restricted, semantic value 1 (truth 
in M) will coincide with real truth for sentences in the set-theoretic language. 
Even so, it does not correspond with truth (or determinate truth, or any such 
thing) across the board: for the theory implies the existence of inaccessibles, 
but also implies that the sentence S asserting the existence of inaccessibles gets 
semantic value 0.24

Once we see that there is an inevitable gap between having semantic value 
1 in any defined sense and truth or determinate truth, we see that the hyper­
paradox (in the form so far discussed) dissolves. The classical set-theoretic 
metalanguage, recall, is a proper part of the object language of primary interest 
(which includes not only full set theory but also ‘True' and ‘—'). We're assum­
ing that excluded middle holds within this restricted metalanguage. Within 
this restricted metalanguage, we can also prove that every sentence of the ob­
ject language, and a fortiori of the metalanguage, has exactly one of the seman­
tic values 0,1 and 1; in particular, this is so of the "hyper-liar" sentence H that 
asserts of itself that it does not have semantic value 1. Letting SVM represent 
semantic value (relative to the ground model M), the obvious "paradoxical 
reasoning" proves the following disjunction:

Either SVm (<H)) = 1 and —H, or SVm (<H)) = 1 and H.

Or employing the truth schema (which is completely uncontroversial in this 
instance since H is simply a sentence of set theory)

(*) Either SVM (<H)) = 1 and <H) isn't true, or SVM (<H)) = 1 and 
<H) is true.

While the conclusion may at first seem surprising, it is really just an instance 
of what we've seen is inevitable when we try to use a defined predicate like 
‘has semantic value 1' as a surrogate for truth: we will always get extensional 
failures. Indeed, the reason for the failure is essentially the same as in the illus­
tration involving inaccessible cardinals: in defining ‘has semantic value 1 (rel­
ative to M)', we must inevitably employ unrestricted quantifiers, quantifiers 
that range over sets not included within the domain of M. So the hyper-liar H 
is a sentence that essentially involves unrestricted quantifiers, and so there's no 
reason why the defined surrogate for truth should be expected to correspond 
to real truth in that case. (Which of the two disjuncts of (*) holds presumably

24A similar point arises for ground models not definable in L, but definable only in broader 
classical sublanguages of L+. For instance, if we add to the language of ZFC a predicate ‘is a true 
sentence of ZFC', it is possible to define in this extended language ZFC* a (countable) arithmeti­
cally standard model (ω-model) of ZFC that "reflects the real universe" with respect to sentences 
in the language of ZFC; that is, the sentences of the language of ZFC that are true in M are pre­
cisely those that are genuinely true. (The definition incorporates a downward Lowenheim-Skolem 
construction on the full universe; the resulting model is thus quite "unnatural".) If we perform 
the construction of semantic value from such a starting model, there will be no sentence of ZFC 
for which there is a gap between having semantic value 1 and genuine truth; but Tarski's Theorem 
still shows that there is a sentence of ZFC* for which there is such a gap, which is again enough 
to show that semantic value 1 in the defined sense can't quite coincide with truth. And again, be­
cause of the classical nature of such a restricted truth predicate, truth and determinate truth should 
coincide, so semantic value 1 can't coincide with determinate truth either. (Thanks to Robert Black 
for a question that inspired this footnote, and to John Burgess and Stewart Shapiro for discussion 
of some points related to it.)

29



depends on the vagaries of the starting model M; but whichever of the two dis­
juncts holds for H, the other disjunct holds with -H substituted everywhere 
for H.)

I do not mean to suggest that the notion of having semantic value 1 in the 
sense defined has nothing to do with truth or determinate truth. On the con­
trary, it serves as a good model of these notions (in an informal sense of model): 
just as our starting model M (in the technical sense) is (in an informal sense) a 
slightly inaccurate model of the full universe of sets, so truth in M (i.e. having 
semantic value 1, relative to M ) is a slightly inaccurate model of genuine truth. 
Because it is a model of it in a classical metalanguage, it is inevitably a feature of 
themodel thatall questions have determinate answers: for any sentence, either 
it has semantic value 1 relative to M or it doesn't. But we have independent 
reason to know that the model cannot be taken seriously in all respects; and the 
fact that attributions of semantic value satisfy excluded middle is one of the re­
spects in which the model can not be taken seriously. (Having semantic value 1 
is in fact a bit better as a model of determinate truth than of truth, and of deter­
minate determinate truth than determinate truth, and so forth: for when ρ > σ 
there are more A for which DPA V -DpA holds than for which DA V - DA 
holds. But we know from the above discussion of Tarski's theorem that hav­
ing semantic value 1 relative to M can't possibly correspond to any reasonable 
notion of determinate truth, even for sentences of pure set theory where any 
reasonable notion of determinateness is presumably redundant.)

I have been arguing (following Tarski) against the possibility of defining no­
tions of a truth-theoretic sort from a basis that excludes such notions: any such 
attempt yields at best an approximation to the notions we are really aiming 
at. But might we introduce slightly different notions of having semantic val­
ues 1, 2, and 0 purely by axioms, where in contrast to the notions defined be­
fore, these are conceived as not dependent on a starting model but as ”related 
to the real universe as the defined notions were related to the ground model 
M ”? Yes, I think it can be easily done. For instance, we could take as primi­
tive the predicate RSV2(x) of being a sentence of L+ with ”real” (not model- 
dependent) semantic value 1, define RSV0(x) as RSV2(neg(x)) and RSVi(x) 
as SENT(x) Λ -RSV2(x) Λ -RSV0(x), and introduce the following axioms and 
rules:

A = RSV2((A)), when A is a sentence of L+

= RSV2((A)) d Do A, when A is a sentence of L+ (a separate such axiom 
for each σ < λ0).

No finite subset of these axioms can lead to paradox, since we can always then 
interpret RSV2 as the highest Do in the set, so there will certainly be no paradox 
derivable in the inferential system given.

I'm not sure that there is a great deal of value in adding an axiomatic no­
tion of ”real semantic value” to the language: I doubt that we really under­
stand such a notion, and also doubt that developing an understanding of one 
would serve much purpose. But for what it's worth, it might be possible to 
consistently extend the system just described, in a number of ways. One way 
to extend it would be to include laws governing the interaction between the
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new predicate RSV1 and the — operator. Such laws would be very important 
to understanding the significance of the new RSV1 predicate: for instance, they 
would determine such things as whether D(RSV1(x)) is stronger than RSV1(x) 
andwhetherD(—RSV1(x))isstrongerthan—RSV1(x). Another way to extend 
it—though one that reinforces doubts that we understand what we're doing— 
would be to allow the displayed rules of the previous paragraph to apply even 
when A was a sentence of the enlarged language that includes RSV1 (in which 
case we could modify the definition of RSVi (x) by replacing ‘SENT', i.e. ‘sen­
tence of L+ ', by something meaning ‘sentence of the enlarged language').25 Do­
ing this would lead to inferential hyper-paradox if we also assumed excluded 
middle for all instances of the predicate RSVi(x) or RSVi (x) (and continued 
to assume disjunction-elimination in the expanded language). But now that we 
have given up on the project of defining RSV1(x) in the classical set-theoretic 
language (or the language of it together with a purely classical truth predi­
cate), there's no reason to suppose that excluded middle holds for the predi­
cate RSV]_(x) or RSV1 (x). And the fact that excluded middle would lead to 
paradox is about as strong reason against assuming it as could be desired.

My skepticism about the existence of a deep philosophical role for a defini­
tion of the notion semantic value might seem to sit ill with the fact that such def­
initions played a major role in this paper: notably, in Section 2. In fact, though, 
there is no conflict: the model-relative definition of semantic value is precisely 
what is needed for the main goal I introduced it for, which was to provide 
a strong sort of relative consistency proof for the naive theory of truth in the 
logic I've set out. What I've done in effect is to show in set theory that for any 
theory T that includes the arithmetic required to develop formal syntax, and 
any classical model M of T that is standard with respect to that arithmetic, one 
can define a new non-classical model for the logic LCC which satisfies naive 
truth theory. Moreover, the domain of the new model is precisely the same as 
that of the old, and all of the predicates of T have the same extension in the 
new model as on the old; among other things, this implies that the new model 
is standard with respect to arithmetic too. So if T is consistent with respect 
to ω-logic (the logic of arithmetically standard models), so is the theory T* in 
LCC whose axioms are those of T plus the axioms of naive truth theory.26 Since 
this holds for any theory T with an arithmetically standard model—including 
a theory that includes claims about the physical world—this shows not just the 
consistency of naive truth theory in LCC, but its "conservativeness", in one 
important sense of that phrase.27

25 Whether the result of so doing would be significantly different from adding the DA° predicate 
contemplated earlier would depend on the laws of interaction between RSV1 and '^'.

26T itself can be conceived either as a classical theory (supplemented by the ω-rule) or as a theory 
in LCC (supplemented by the ω-rule); a classical theory is just a special case of a theory in LCC, it 
is a theory in LCC in which excluded middle is assumed for all instances of all the basic predicates.

27The reason for the qualification: many people think that to call naive truth theory conservative 
should require that whenever T is consistent, then T** should be consistent, where T** has as 
its axioms those of T* plus all instances of any schemas in T that contain the new term ‘True'. Naive 
truth theory is certainly not conservative in the latter sense. Indeed, the extension of the schemas 
of number theory or set theory to instances involving ‘true' is slightly delicate: if paradox is to be 
avoided, the schematic axiom generally needs to be replaced by a schematic rule, whose instances 
imply the corresponding instances of the axiom in contexts where excluded middle is assumed: 
see [5] for some discussion of this. Even with schemas in the rule form, the "conservativeness" of 
naive truth theory does not in itself guarantee that we can extend the schemas of ZFC to predicates
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Given that our goal is this sort of "conservativeness" proof, the point of 
the definition of semantic value is simply to enable us to construct the non­
classical model from the classical; and so the dependence of the notion of se­
mantic value on the starting model is no cause of concern. The construction 
of the new model uses standard set theory (Zermelo-Fraenkel with choice), so 
of course it only yields the consistency (and "conservativeness") of naive truth 
theoryrelative to that set theory; but that seems a prettysolid consistency proof 
nonetheless.

I don't mean to suggest that the only desideratum on an acceptable logic 
for the paradoxes is that there be a "conservativeness" proof for naive truth 
theory in the logic. (For instance, the logic of [5] would pass this test, but its 
conditional seems inadequate in various ways, e.g. in failing to reduce to the 
material conditional in contexts where excluded middle is assumed. The logic 
of [2] passes the test too, but by my lights it is excessively weak, e.g. in being 
a relevance logic.) And I don't deny that in selecting among logics in which 
naive truth theory is "conservative", a definition of semantic value appropriate 
to one such logic could serve a heuristic role in motivating that logic over the 
others. But the main desideratum in making such a selection isn't the notion of 
semantic value, but the ease of working with the logical laws that are validated.

I make no claim that LCC is optimal in this respect: I wouldn't be at all 
surprised if there were alternative approaches to the conditional, based on al­
ternative semantics, thatweremore attractive overall. (E.g., they might include 
"conditional strengthenings" of some of the B and D axioms, and this gain in 
strength might be more appealing than any losses that were required to com­
pensate for the gain.) I do think, though, thatLCC is a significant improvement 
over any of the other attempts to preserve naive truth theory currently in the 
literature.28
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