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Given (RM), two things follow. First, the rule for € simplifies:

(8 Ifrpis {x:Ax}, |n € t2|v7c is
(a) Lilf (3p < 6)(JA(1/x)p = 1)
(b) 0iff (3p < o) (|A(t/D)]p — 0)
(c) 1/2 otherwise.

Second, and of crucial importance, cardinality considerations ensure that there is a point
¥, past which ¢ can never change, yielding “final values” for each sentence at each world.
Letting |Al, abbreviate |A[,w,, this tells us that for any closed # and any A with no variables
beyond x free,

(FP): | € {x: Al = |A(t/3)],.

By contrast to the static construction, dyramic micro-constructions allow for certain
changes in the values of conditionals as the micro-construction proceeds. In the dynamic
constructions the function v still plays a role in determining the value of conditionals, but
unlike in the static construction, it is not the whole story; the value of a conditional is
now in part determined by the values of its antecedent and consequent. Of course, one
can only allow limited forms of changes during the micro-construction if monotonicity is
to be preserved (and to give up monotonicity would be to give up the central idea of the
construction). But here’s one useful example of a dynamic construction (and the only one
we’ll consider in detail in the present three-valued setting): we keep everything the same
except that we replace the valuation rule for — by

1 iff VA —B)=1
0 iff WA B) =0, or [v(A — B) = 1/2
|A — Blyo = and |Al, o = 1 and |B, ¢ = 0]

/2 otherwise; that is, iff v(A — B) = 1/2 and
(JAly,s < Lor|Bl, g >0).

This modification in the rules for the conditional doesn’t prevent us from arguing induc-
tively that once a sentence has value 1 it retains that value throughout the Kripke-Gilmore
construction, and the same for 0. Given this, the fixed point argument goes through as
before. That is, (FP) holds for the dynamic construction as well as the static.

Let a formula of form ¢ € {x: C(x;u1, ..., ux )} and its corresponding formula C(¢;u1, ..., i)
be basic equivalents. Call a prevaluation v fransparent if for any sentences A and B, and
any A* and B” obtainable from A and B respectively by sequences of substitutions of basic
equivalents, v(A — B) = v(A* — B*). Then we have

Intersubstitutivity Corollary: If a sentence A is obtainable from a sentence B by a
sequence of substitutions of basic equivalents, and v is transparent, then A and B
have the same value at the fixed point over v.

(This is immediate from (FP) and the valuation rules for the static and dynamic micro-
constructions. Without the transparency assumption about v, all we could conclude from
(FP) is that this holds when the only substitutions are outside the scope of an —.)

Now call a prevaluation v reflexive if v(C — C) = 1 for every sentence C.

Corollary on Abstraction: If v is transparent and reflexive, it gives value 1 to each
instance of the Abstraction schema.

(Reflexivity together with transparency lead by the Intersubstitutivity Corollary to v(f € {x:
A} > A(t/x)) =v(A(t/x) >t e{x:A})=1foreacht,and so |t € {x:A} < A(t/x)]y = 1.
Since quantification is treated substitutionally we get Abstraction immediately.)
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As we’ll see, there are plenty of transparent and reflexive prevaluations. A trivial exam-
ple is the prevaluation that assigns value 1 to every conditional. This trivial prevaluation,
in fact, even validates Extensionality, in both rule and conditional forms. So if the task
were merely to validate both Abstraction and Extensionality, we’d be done. But of course
we also want the conditional to obey reasonable laws, for example Modus Ponens, which
this valuation fails to deliver.

Before describing Brady’s treatment of the conditional (which we’ll call the “macro-
construction”), we prove an important theorem about the micro-constructions. This “Micro-
Extensionality Theorem” is really the heart of Brady’s extensionality result.

4. THE MICRO-EXTENSIONALITY THEOREM

Let a and b be closed abstracts.
If v is a prevaluation, call it

e {(a,b)-congruent if for all formulas C(x) and D(x) with no variables other than x
free, v(C(a) — D(a)) = v(C(b) — D(D));

o {a,b)-extensional if for every closed L™ term ¢, |1 € a|, = |t € b]y

o sirongly {(a,b)-congruent if |a € t|, = |b € 1|, for every closed L™ term 1.

For transparent v, we could equivalently say:
o strongly (a,b)-congruent if for all formulas C(x) with no variables other than x
free, |C(a)ly = [C(D)]y.
Soin the case of transparent v, strong {(a, b)-congruence entails ordinary {a, b)-congruence,
at least in the case of the static micro-construction.

Theorem (Micro-Extensionality Theorem). Ifv is transparent, {a,b)-congruent and {a,b)-
extensional, it is strongly {a,b)-congruent.

This theorem holds for both static and dynamic micro-constructions. To establish it, it’s
convenient to reformulate it. Let X, , be the set of formulas A(x) with no free variables
other than x such that for the final values |A(a)|, and |[A(D) |y, |A(a)|v # |A(D)]v. (|Aa)|y #
|A(b)], would not be possible unless x were free in A(x), so we might as well have said that
x and only x is free in A(x).) Then a further reformulation of the claim that v is strongly
(a,b)-congruent is that X, 5 , = 0.

Given this way of stating the claim, the micro-extensionality theorem can be put as: for
any prevaluation v that is transparent and {a, b)-congruent,
€))] If X, 5 7 0 then v is not {(a, b)-extensional.

(For the remainder of this section, we will assume that v is a transparent, {a, b)-congruent
prevaluation.)

With a few more definitions, we’ll be able to simplify this statement even further. For
each sentence B, let w,(B) be the first level of the Kripke construction at which B assumes
its final value in the construction based on the prevaluation v. (So if the final value of B is
1/2 in that construction, t,(B) is 0.) We’ll call this the level of B (relative to v).

For any o, let £, ;. be the set of formulas A(x) in X, 5, such that at least one of
A(a) and A(b) has level < ¢ and also has value in {0, 1} at the fixed point of the micro-
construction. (The second requirement ensures that, at ¢, A(a) and A(b) already have
different values even if one of them does not yet have its final value.) Obviously if |A(a)], #
|A(D)]y then one of them has value 1 or 0 at some &, so we can rephrase (1) as

(1) If 36(Zapv6 7# 0) then v is not (@, b)-extensional.
We break the proof of this claim into two lemmas.
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Lemma4.1. Vo[if X, ;s # 0 thenX,, s contains formulas of form ¢ (x) € x].

Proof. Assuming that36(Z, . 7# 0), let §, 5 , be the smallest ordinal o such that X, 4 ,, 5 7#
#. When 6 < 6%, X416 C Xy py.o+ by definition; so the lemma will be established if we
establish the instance where & is 8, 4,. (For the remainder of the proof, a,b, v will remain
fixed, so we’ll suppress mention of them hereafter; thus |A| without any subscripts will
mean the value of A at the fixed point of the micro-construction over v.) We establish this
claim by establishing its contraposition, which we prove by induction on complexity. That
is, we establish that: if no formula of form ¢(x) € x is in X5 then X5 = 0, making use of the
fact that for all p < §, £, = 0. (That is, for any p < 6 and any B(x), if |B(a)|p € {0,1}
then [B(b)|, = |B(a)|p, and similarly with a and b reversed.)
Atomic formulas B(x) with at most x free are either:

(i) Formulas of the ground language;
(ii) Formulas of form Class(t(x));
(iii) Formulas of form f(x) € n where n is a name in N
(iv) Formulas of form ¢(x) € {y: B(x,y)}
(v) Formulas of form 7(x) € x.

(We’re allowing that ¢(x) not contain x free, and that B(x,y) not contain x free and/or not
contain y free; it’s just that no variables other than those displayed can be free in these
expressions.)

No formulas of form (i) can be in any Xs: a and b are abstracts, so when x is free in
B(x) for ground-language atomic B, |B(a)| = |B(b)| = 0 (and when x isn’t free in B(x),
B(a) and B(b) are the same sentence).

Similarly for case (ii): the only terms in which a and b occur are terms for classes, so
|Class(t(a))| = |Class(t(b))| = 1.

Similarly for case (iii): if n € N, then |t € n| = 0 for any closed term 1.

As for (iv), suppose 1(x) € {y: B(x,y)} is in Zg; then at least one of |t (a) € {y: B(a,y)}|s
and |t(b) € {y: B(b,y)}|s is in {0, 1}, and we can suppose WLOG that the first is. But if
t(a) € {y: B(a,y)}|s = 1 then there are p < & such that |B(a,(a))|, = 1 (and hence
|B(a,t(a))| = 1). By choice of 9, this requires that |B(b,1(b))| = 1. But then

t{a) € {y: Bla,y)} = (D) € {y: B(b,Y)}s = 1,

which contradicts the supposition that ¢ (x) € {y: B(x,y)} is in 5. The analogous argument
holds for [t(a) € {y: B(a,y)}|s = 0; so no formula of form (iv) is in Xs.

Finally, in case (v), by hypothesis no formulas of this form are in Xg.

So, putting the cases together, no atomic formulas are in X5.

But then the result holds for non-atomic formulas too: for it’s clear that

(a) if B(x) isn’tin X5, —B(x) can’t be either;
(b) if neither B(x) nor C(x) is in X, B(x) AC(x) can’t be;
(c) if for all closed terms ¢, B(,x) isn’tin X, VyB(y,x) can’t be.

What about the conditional? Here we appeal to the {(a, b)-congruence of v. On the static
micro-construction, that directly yields

(dstaric) B(x) — C(x) can’t be in Zg.
But even on the dynamic, the {a,b)-congruence of v yields that a difference between
|B(a) — C(a)|s and |B(b) — C(b)|s requires a difference either between |B(a)|s and
|B(D)|s ot between |C(a)|s and |C(b)|s, so we have

(d) if B(x) and C(x) aren’t in g, then B(x) — C(x) can’t be. O
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What about the 0-clause for —? Once again, for the extensionality rule it makes no
difference, beyond the constraints mentioned in connection with =. Here are two possi-
bilities:

(0—4) va(A— B) =0iff (3 < «)(|A|g = 1 and |B|g = 0).
(0—p) va(A — B)=0iff ve(A — B) # 1, i.c. iff

(3B < )(|Alg = L and [B|g < 1).
With = defined as above, these rules induce the above rules for =.

A third possibility is
(0—=¢) va(A — B)isnever 0, i.e. vg(A — B) =1/2iff

(3B < )(|Alg = L and [B|g < 1).
This wouldn’t be very interesting in connection with the static micro-construction, but in
connection with the dynamic construction we outlined carlier it yields:

1 iff (VB < a)(if |Alg = 1 then |B|g = 1)
|JA— Bl =4 0 iff (3B <a)(|Alg=1and |B|g <1)
and |A|q = 1 and |B|q = 0.

In this case, |A = Bl is 0 if and only if (38 < «)(|A|g > [B|g) and |A|¢ = 1 and |B|¢ =0.

We’ll confine our consideration of dynamic micro-constructions to (0 —¢). (A dynamic
construction with (0 —p) would coincide with the static, and with (0 —4), the dynamic
clause mentioned earlier wouldn’t produce interestingly different results.)

The crucial fact about all these Brady-like constructions is that whatever the O-clause
(provided it meets the constraints above), we have
(%) if o < B then for all A and B, vg(A — B) < vg(A — B).
(< is the normal numerical order, as opposed to the information order <x used in the
micro-constructions. In the case of the static constructions this means that [A — B|g <
|A = B|a, but in the dynamic with (0 —¢) it is not ruled out that A — B have value O at
one stage and 1/2 at a later stage.) (x) implies that we eventually reach a fixed point where
increasing « makes no difference to the values of sentences. We take this fixed point Qyy
to be the previously mentioned @, and we define a sentence to be M-valid if it takes value
1 at Qy, and an inference to be M-valid if it preserves 1 there. Validity for sentences is
then defined as taking value 1 at Qg for all ground models M; similarly, an inference is
valid if it preserves value 1 at £y for all ground models M. The ordinal ; associated
with this fixed point value may differ for different ground models M but in what follows,
we’ll often speak as if M has been fixed, and refer to the fixed point simply as Q. At this
Q, the 1-clause for — yields:

(BFP1) vo(A — B) = 1iff (VB)(if |A|ﬁ =1 then |B|ﬁ =1).
Since vg is one of the Vg, We can immediately conclude

Corollary. Ifvo(A — B)=1and |Alqg = 1then |Blg = 1.

Even in the dynamic, |A — B|g = 1 iff v¢(A — B) = 1, so we can replace the first

conjunct of the antecedent by |A — B|g = 1. Thus given our definition of validity we have:
Modus Ponens: A,A — BE B.
We also get a fixed point result for 0, though it depends on the 0-clause we use. For the
three listed we have
(BFPOs) va(A— B)=0iff (3B)(|Alg = 1 and |B|g = 0);
(BFPOg) vo(A— B)=0iffvg(A — B) #1, ie. iff
(3B)(|Alg = Land [B|g < 1);
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indeed, we have the following non-contraposable conditional form:

2 E VaxVy[Class(x) AClass(y) \Yulue x s uey) > Vi(x ez y€z)].
And the version with (0 —pg) even yields

3 E VaxVy[Class(x) AClass(y) \Yulue x s uecy) = Vi(x ez yez)].

Proof. To prove (2), we need that if ¢ and b are closed abstracts, then for all o, if |Vu(u €
a<uée€b)|qg=1then [Vz(x €z y € z)|¢ = 1. And for each ¢, the antecedent holds
iff for all w and all B < «, |u € aly, = |u € bly,, i.. iff all such vg are (a, b)-extensional;
whereas the consequent holds iff for all z and all § < «, |a € Z|Vﬁ =lbe z|Vﬁ, ie. iff all
such vg are strongly (a, b)-congruent. So what we need is
(*) for all «, if all vg with 8 < « are (a, b)-extensional
then they are all strongly (a, b)-congruent.

It is clear by induction that each vg is transparent. So Micro-Extensionality guarantees
that for each  and each a and b, if vg is (a,b)-congruent and (a, b)-exiensional then vg
is strongly (a,b)-congruent. So on the assumption that (i) all vg with B < « are (a,b)-
extensional, we can conclude that (ii) if all such vg are {a,b)-congruent then they are all
strongly (a, b)-congruent. And it is immediate from the Brady construction that (iii) for
each B, if (Vy < B)(vy is strongly (a,b)-congruent) then vg is (a,b)-congruent. Putting
(ii) and (iii) together, we have, on assumption (i), that for each f < a, if (Vy < B)(vy is
strongly (a, b)-congruent) then vg is strongly {a, b)-congruent; so by induction, all such vg
are strongly {(a,b)-congruent, as desired.

That proves (2), and (1) follows from it. And with rule (0 —g), (3) reduces to (2),
since with that rule the antecedent

Class(x) AClass(y)AVu(uex s uey)

and the consequent Vz(x € z < y € z) can only take on the classical values 0 or 1. O

It’s worth noting that in any of these constructions, we have a converse of extensionality,
even in = form:

4 EVxVy[Class(x) NClass(y) \Vz(x ez ye ) =>Vuluex s uey));

for any u, simply let z be {w : u € w}, and apply the Intersubstitutivity Corollary (as guar-
anteed by the transparency of all v, plus FP). So with the bivalent O clause extensionality
holds with <, and with the others it holds with an — in one direction and both an — and
an = in the reverse.

0. IDENTITY

For the Brady construction, it remains only to introduce identity, show that it obeys
reasonable laws, and make explicit the familiar technique of turning the models we’ve
constructed into “normal” models where the identity relation is standard. In the logics
with non-bivalent conditionals, the identity predicate will not be bivalent either, so it will
be worth making explicit how the normalization technique works there. Most of what
follows will be independent of the O clause for conditionals.
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(6) If 1 is a closed term and £, is a name in the ground language, |t € 2 }v.6 = (0, 1)
(7) If 1y is a closed term and 12 is {x : A(x)}, |1 € fafj 5 is 1
iff (3p < o)(Vt in the interval [p, o)) (|A(z/x)];; = 1)
(8) If 1y is a closed term and 1y is {x : A(x)}, |[t1 € 2], 5 is 1
iff (3p < o)(Vt in the interval [p, o)) (|A(t/x)], . = 1)
What about the conditional? The analogy isn’t perfect, but we can think of the +-term
in the valuation of the conditional as similar to the 1-clause in the three-valued case. So
just as the static and dynamic constructions shared a 1-clause, they’ll share the rule for
|A — B[, namely,
|A— By =v'(A— B).
But just as the static and dynamic constructions differed on the O clause in the three-valued
case, they’ll differ here on the relationship between v~ and |[A — BJ, ;. In the static con-
struction, the relationship is just identity: 7

(S) |A— Bl,s=v (A—B),

whereas dynamic constructions may vary the relationship in one of several ways:
(D7) |A— B, = Liff v (A— B) = land A, = 1; or

(Dy) |A— B|, s =1iff v_(A— B) =land |B|, ;= 1; or

(D) |A— Bl = 1iffv"(A— B) = 1and |A|V+7(, =land [Bf,; = 1;

or simply

(D) |A—>B|;7(,:liff|A|j76:1and |Bl, s =1.

(With (D), we don’t really need v~ at all; or we can think of (D;,) as a special case of
(Dy;), where v~ always assigns value 1 to everything.) Whichever of these clauses for
|A — B, s we choose, neither the positive nor the negative component of the value of a
sentence ever goes from 1 to 0 as the micro-stage ¢ increases; so there must be a point W,
after which no sentence changes value, that is, a fixed point in the micro-construction of
the valuation for €, which satisfies (FP).

We now do a Brady macro-construction of vy, where at each macro-stage o we de-
termine vy (A — B) from the values of A and B at the minimal fixed points of the micro-
constructions at prior stages. As before, we simply write |A|y for the value of A at the
minimal fixed point of the micro-construction over vg,.

In the case of v;(A — B)—which is just |A — B|{; even on the dynamic, so we’ll write
it that way—we set:

A — BJ, = Liff (VB < a)(lA[; < |B})
That’s for a non-contraposable conditional; for a contraposable it would be
A = Blg = 1iff (Y8 < a)(JA[; < |BJ; and |B[; < |A;).

What about the v, ? As noted earlier the choice is irrelevant if we use version (D;,) of the
dynamic conditional. For the static, and for the dynamic proposals (D; )-(Dy;), the most
natural choice is
(D)t vg(A— B) = Liff (VB < &) (|Al; = |Bl; = 1);

then for = we have the same condition. (If () is chosen, then the |A — B[, clauses given
in (D} )-(Dy;) can be simplified, using the observation of the next paragraph: that +-values
of sentences can never pass from 0 to 1 as the macro-construction proceeds. For instance,
given that observation and (1), (D; ) is equivalent to

(I7): |A — Blg = Liff |A[§ = 1and (VB < &)(|B|; = 1).)
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Ax1 A—A reflexivity

Ax2 A—AvVBand B—+AVB

Ax3 AANB—Aand ANB—B

Ax4 —A+A double negation

Ax5  AAN(BVC)— (AAB)V(ANC)

AX6 (A—=B)AN(A—C)—=(A—BAC) strong lattice A

AX7 A—=C)AN(B—C)—=(AVB—C(C) strong lattice V

AX8 (A—-B)— (B— —A) contraposition axiom

Ax9  —(AAB)< (-AV-B) deMorgan 1

Ax10 —(AVB) <+ (-AA-B) deMorgan 2

Ax1l (A—=B)—(B—C)—A—C(C)) suffixing axiom

Ax12 (A—B)— ((C—A)— (C—B)) prefixing axiom

Ax13 (A—=B)AB—C)—=(A—C) conjunctive syllogism

Axl4 A— (B—A) weakening

Ax15 (A—B)vV-(A—B) conditional LEM

R1 A,B-FAAB adjunction

R2 AA—BFB modus ponens

R3 A,-B+—(A— B) Contra-Modus-Ponens

R4 A,—-AFB explosion

MR1 A ngB F gf ¢ reasoning by cases

Q1 VxA — A(¥/a) a free for x

Q2  Vx(AVB) —AVViB x& FV{A}

Q3 Vx(A—B)— (A —VxB) x & FV{A}

Q4 A(¥/a) — AxA a free for x

Q5  AAZxB— Ix(AAB) x& FV{A}

Q6 Vx(B—A)— (3xB—A) x & FV{A}
THAMY)

RQ  —— = y & FV(CU{vxA})
A(x/y) - B

MR2 e y & FV{3xA,B}

Extl Vx(xcea<xeb)bVx(acxsbex)

Ext2 Vx(xcasxeb)—Vxlacxsbex)

Ext3 Vx(xcasxeb)=Vxlacx<bex)

Extd Vx(xca+xeb)bVx(acx<bex)

Ext5 Vx(xca+rxeb)—Vxlacx<bex)

Some differences between our constructions are then as follows:
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	8. POSITIVE BRADY LOGIC AND POSITIVE BACON LOGIC
	17It might be thought that we need not only rule weakening, but a conditional form of it, either = B (A B)
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	vα (A→B) =
	can't be adapted to these other constructions, at least without substantial modification of those constructions
	18The following example is a counterexample to extensionality in both constructions: a = {x : ⊥} and b = {x : T ⇒⊥ ; c = {x : ∀y(x ∈ y ⇔ b ∈ y)}. In both constructions, it's clear that ∀x(x ∈ a ⇔ x ∈ b) comes out valid;
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	take V and ∃ as well as ∧ and ∀ as primitive.) While it would be possible to keep -, but with formation rules that allow it to apply only to formulas of the ground language, it is more convenient to drop it entirely, and for each ground predicate p introduce a dual predicate p*. (±* is our new version of T.) Call the resulting ground language Lpos, and the extended language L+,pos . We take the logic of the ground language to include the LEM-like axiom p(x1,...,xk) Vp*(x1,...,xk) and the explosion-like rule
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	(*) |B | 3ασ = 1 iff |B|2ασ= 1 whenever B is either of form C D or of form a G b
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	no involutive negation is a high price to pay. And while there are other negation-like operations, in the language, we don't think they're enough to fill the gap. Consider the obvious candidates, the operations definable from ⊥ and iterated conditionals. It's clear that we can iterate the operation ‘A for any A and B, define A A→(n) B inductively in the obvious way:
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	(ii) accordingly, he defines validity, not as preservation of value 1 at the fixed
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	(6) If t1 is a closed term and t2 is a name in the ground language, |t ∈ t2 |v,σ = <0,1>
	26
	26

	So at the initial (a = 0) stage, both v+ and v- assign every conditional 1 (though in the dynamic versions this doesn't prevent some |A →B |-v0 from being 0). An easy induction on a, with a subinduction on complexity, shows that as a increases, neither the + nor the - value of any sentence can ever go from 0 to 1. This then leads to a fixed point ΩM as in the original Brady construction; every sentence gets one of the values <1,0>, <0,1>, <0,0> and <1,1> at the fixed point
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	explosion, but with involutive negation) which we call DTJK, and which is described as usual in Appendix
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	RQ-Weakening-Axiom: ⊧ Everything is B all A are B.
	Abstraction:
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	(as presumably any satisfactory logic does), so it yields both (Vy)(y ∈ a) and (Vy)(y ∈ b). So a and b are on any reasonable criterion universal classes, and any interesting version of naIve class theory will declare them identical. We saw that Brady's theory didn't declare them identical, because it didn't even declare them co-extensive, and we blamed that on the absence of (Rule-)Weakening; but in fact, even the theory of this section, which has Weakening for →, fails to declare these universal classes co
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	defined as {x : B} is a universal class. Let a be {x : T}; it too is a universal class. But they can only be declared coextensive if ⊧ T ⇔B, which by hypothesis we don't have. Similarly by taking z to be {y: ∀x(x ∈ y ⇔T}, we see that the right hand side of Intuitive Extensionality for Universal Classes fails.
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	by Weakening from a contraposable → So if the Weakening Rule is assumed to hold for the conditional used in the Extensionality Rule, there are only two ways we could give up (**):
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	A second, “tepid” understanding—which is perhaps the more usual one—is to take the Schema as applying only to its own language L+-. In that case, we could still advance beyond 0-level abstracts if our introduction of abstracts at each stage was definitional, for then we would in effect be introducing them into the object language. However, performing this extension conservatively requires Extensionality; moreover, it requires a stronger form of Extensionality than the rule form we've focused on, and indeed 
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	Ax1
	Some differences between our constructions are then as follows:
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	Section
	We haven't included the variant of Brady with the 0 ⇒C clause (and dynamic micro­construction): as faras the laws in ourlist go it is like Brady
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	|A w B\w = 1 iff VyVz(if z ⊑ w*∩y and |A|y = 1 then |B|z = 1);
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	designated iff (a) for all w |A|w+ is 1 and(b)forsomew|A|w-is0. Contrary to what Bacon claims, however, this has the consequence that A A is not generally valid: the sentence X of Section




