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	NAIVE TRUTH AND RESTRICTED QUANTIFICATION: SAVING TRUTH A WHOLE LOT BETTER HARTRY FIELD
	Abstract. Restricted quantification poses a serious and under-appreciated challenge for nonclas­sical approaches to both vagueness and the semantic paradoxes. It is tempting to explain “All A are B ”as“Forallx ,if x is A then x is B”; but in the nonclassical logics typically used in dealing with vagueness and the semantic paradoxes (even those where ‘if ... then' is a special conditional not definable in terms of negation and disjunction or conjunction), this definition of restricted quantification fails to
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	I'm inclined to add that restricted quantification contraposes:
	1 The theory that results does share many features with the theory of Field (2008). For instance, though I won't discuss this here, we can define a determinateness operator, and iterate it transfinitely, in the same way as in that book, and the resolution of the “paradoxes of determinate truth” would carry over without significant change.
	2
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	3

	The motivation for trying to keep the above laws (together with other natural laws of restricted quantification that will emerge) isn't just that they “sound right”. To those of us who are used to thinking in classical contexts, many things initially sound right that, once we take truth or vagueness seriously, are suspect except in restricted form. The motivation, rather, is that it is important to be able to reason with restricted quantifiers, and without laws that at the very least approximate these, our 
	If t is a complex term denoting A “contingently”, such as “the last sentence Joe uttered”, then of course True(t) won't be equivalent to A in the sense above. Still, either of X and Y will be validly inferable from the other together with the assumption that the last sentence Joe uttered is A.
	2
	2

	4
	(i) If <A> and <B> are true then <C> is true
	But the challenge to providing an adequate naive theory depends little on these extra requirements. By and large, once one has a reasonable theory with a naive truth predicate, it’s easy to extend it to include a naive satisfaction predicate, and to include the required composition principles, and to validate an extended induction rule. That will be so for the construction in this paper.
	3 Naive theories of satisfaction are effectively equivalent to naive theories of properties: theories
	5
	5

	(Rejection is to be taken as a state that precludes acceptance.) Paraconsistent logics with reasonable laws of conjunction will admit acceptance gluts, that is, they allow the simul­taneous acceptance of both a sentence and its negation. So in these logics, accepting the negation of a sentence does not require rejecting the sentence, given that rejection precludes acceptance. Dually, paracomplete logics with reasonable laws of disjunction will admit rejection gluts, that is, the simultaneous rejection of bo
	6 Both sorts of logics allow both acceptance gaps and rejection gaps , but that has nothing special to do with these logics: any reasonable logic will allow for the nonacceptance of both ‘This coin will land heads' and its negation, and also for the nonrejection of both.
	Naive paracomplete theories (unless they are paraconsistent as well) do not accept truth value
	6
	6

	(i) Q A­True(<Q>):
	§3. The restricted quantifier and the conditional. I'll use the notation ∀x(Ax/Bx) for “All A are B”. But rather than taking this as a primitive binary quantifier, I'll take it to be defined from the ordinary universal quantifier and a conditional ►: ∀x (Ax/Bx") will abbreviate∀x(Ax ► Bx). That this can be done isn't a substantive assumption: one could equally well take the restricted quantifier as primitive and define A ► B as ∀x (A/B) where x is a variable not occurring in either A or B. (Or if one doesn'
	7 For what it's worth, those who think of the semantics of ‘if...then' as given in part by
	7
	7

	(I-►): [(A ► B) ∧ A]→B
	A look at (I-►) makes clear why I wanted two separate conditionals: no naive truth theory satisfying my background conditions can have the analog of (I-►) with both conditionals the same. (For any conditional the alleged law [(A » B) ∧ A] » B is called pseudo modus ponens for and it is well known that we can't have both it and genuine modus ponens for » (the rule of inference from A ∧ (A » B) to B) without triviality, in a naive theory satisfying the conditions of note 4.) In order to have a chance of obtai
	project, given that that project assumes an ‘if...then' that reduces to the material conditional in
	notation for the latter; I'll use →. It will turn out that there are reasons for taking the two conditionals to be distinct from each other, and also to be distinct from the conditional ⊃ defined by ­ A v B. Nonetheless, we'll see that both these new conditionals are equivalent to ⊃ “in classical contexts”, on a suitable explication of that phrase. As a very special case, when neither A nor B contains ‘True' (and we don't allow for vagueness), any one of A →B, A ► B and A ⊃ B will be validly intersubstituta
	8
	8

	(2) (Using (I-►) and others instead of (VI-►):) (II-►) and (C-►) lead to ­A→
	(All the routes seem to require the deMorgan's law ­(A ∧ B) ⊧ ­A v ­B, so I suppose one might try keeping contraposability and rejecting that; it isn't an option I've explored.)
	9 Note that (V*) entails (IIc). Similarly, the old (V) entails the following analog of (IIc):
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	(A ⊲B) ∧ (- B ⊲ ­ A), making its contraposability evident.11 But the main focus will be on ► rather than ⊲.
	Since → will obey modus ponens, we will also get weaker →-free forms of all these,
	11 One reason for doing this is to allow anyone who doesn't think restricted quantification should
	(i) ⊧ (A ⊃ B) → (A ► B)
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	like ► and ⊲, will reduce to ⊃ in classical contexts.) Still, we will get an analog of (ii) (and hence (iiw)) and of (iiiw):
	§4. Validity, conservativeness, and general strategy. My concern is with getting a system of logic in which a great many laws involving truth, satisfaction, and the two conditionals are valid (i.e., have only valid instances; laws themselves I take as general schemas, showing valid logical forms).13 A proper model-theoretic account of validity involves quantifying over models (of an appropriate sort) fora language that includes these notions: the inference from r to B is valid if for all models of such and 
	13 I will use upper case letters like A , B etc. ambiguously, both as schematic letters taking formulas as instances and as meta-linguistic variables over formulas. (Indeed, I've already done so.) The danger of this leading to confusion is almost nonexistent.
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	To avoid notational complexity I'm going to restrict attention in the paper to languages that contain truth predicates but not satisfaction predicates. (So the languages won't be able to express the compositional laws for quantifiers.) This would be a serious limitation if there were any reason for the restriction beyond convenience and readability; but in fact it is routine if notationally messy to extend to satisfaction (and the compositional laws will then hold).
	15 Does this conflict with well-known results on the “nonconservativeness of truth” (reviewed in Halbach, 2011 and Horsten, 2011)? The compositional laws will hold in the logic (or at least, they would if the construction were done with a satisfaction predicate, to allow the composition laws for the quantifiers to be expressed), and I've already noted that the rule of mathematical induction will extend to formulas containing ‘True' and ‘Satisfies'; in these circumstances, there's a sense in which the additi
	12
	12

	of sentences in the ground language, then Γ augmented with the claim (CLASS) that all sentences in the ground language are classical is *-consistent in the new logic. So we can safely assume (CLASS) in the new logic, and when we do, all classical proofs in the ground language carry over to the new logic essentially unchanged.)
	(On another matter, it makes no difference whether ‘all formulas in it are classical' is formulated
	13
	13

	18 Note that the space F M and the value space VM based on it depend on the starting model M. In particular, as the cardinality of M increases, that of F M and VM will typically increase. Everything here is model-relative; the construction will give no sense to any model-independent notion of a sentence's value. That is an additional reason why we should not try to associate any of the values with truth.
	there isn't any real connection to necessity or possibility, just a formal analogy to modal semantics.)
	14
	14

	Before turning to this, I'll make another notational simplification. I'll need to consider valuations of formulas relative to several parameters, and having additional subscripts for the assignment function would make for a very cumbersome notation. A common method
	19 Of course there's no loss in expressive power: for a formula A (of L or even L+), |A|g,v,s is
	1 if (∃τ < σ)(∀u ϵ [τ,σ))(|B\g,v,u = 1)
	15
	1 if g(A→B) = 1
	§6. The Kripkean construction in this setting. The task of this section is to generate, for each →-booster g and ⊲-valuation v, a privileged 3-valued extension Tg,v for ‘True' which is “the appropriate one given g and v”. I'll use Kripke's minimal fixed point con­struction. (It isn't really essential to stick to the minimal fixed point, but for convenience I will.) The only novelty, and it's slight, is that the construction will be given in the context provided in the last section, where the values for →-co
	Here, |B|g;V;v means the value of B relative to g and v and to the choice of Tg;V;u as the 3-extension of ‘True'. (Note that if o is an L+-sentence that isn't an L-sentence, Tg,v,σ(o) is always 0.)
	16
	16

	of B →C could only change from 0 to anything else if the value of B changed from 1 to something else or the value of C changed from 0 to something else; that is, a violation of (*) when A is of form B →C would require a violation for one of the less complex sentences B and C.So the induction on complexity still goes through.
	1 if (Ǝτ < σ)(|B lgtVtT = 1)
	(I didn't write them that way at the start because there would be an apparent danger of assigning to Τg,Ό,σ(o) both 1 and 0.) So if t denotes the L-sentence B then
	|True(t)|g,v,σ is 1 iff (Ǝτ < σ)(|B|g,v;τ = 1), and 0 iff (Ǝτ < σ)(|B|g,v;τ = 0).
	Moreover, cardinality considerations show that there is an ordinal after which further increase in σ makes no difference. (That “closure ordinal” may depend on g and v,as well as on the underlying model M.) The desired Τg,v(“the minimal fixed point”) is the one for such sufficiently large σ. For any L+-sentence B, we take|B|g,v to simply be the value generated by this fixed point 3-extension for ‘True'.
	|True(t)|g,v = 1 iff |B|g,v = 1, and |True(t)|g,v = 0 iff |B|g,v = 0.
	Since there are only three possible values, it follows that|True(t)|g,v =1/2 iff |B|g,v = 1/2. and hence
	17
	17

	From this it is clear that all we need to do to ensure that our construction yields naive truth is to ensure that the g and v we construct are transparent.
	(Iσ,A) If | A|g,v,σ ∈{0, 1} then | A|g,w,σ = |A|g,v,σ.
	§7. Fibers. The goal of this section is to construct, for each →-booster g based on M, a set RM,g of ⊲valuations (think of them as the fairly “regular” ones), and a certain privileged member vg of that set. For each fixed g based on M,I'llletFM,g be {< g,v >: v e RM,g}, and call it “the fiber attached to g”; < g,vg > will be called the “base point of the fiber”.
	21 If A is either atomic with predicate in the ground language, or of form True(t ) where t denotes
	18
	18

	to drop the subscript ‘ M ' for now, but it's important to remember that the fiber space, and the value space formed from it, depend on M . Everything here is model-relative; the construction will give no sense to any model-independent notion of a sentence's value.
	1 if (3S e Z)(Vw e S)(if |A|g,w = 1then 1B|g,w = 1)
	This is a legitimate definition: nothing can be assigned both 1 and 0 since if a chain contains both S1 and S2, S1Π S2 can't be empty since it must be either S1 or S2, which were required to be nonempty.22 If Z is 0, valg [Z] assigns 1/2 to every ⊲-conditional.
	Truncation Corollary for echains If S is a member of the echain Z, let ZS (the S- truncation of Z) be {S' e Z : S' C S}. Then valg[ZS] = valg[Z].
	22
	The definition doesn't really require that Z be a chain, simply that it be a collection of nonempty sets of transparent valuations such that any two members of Z have a common subset in Z . This is relevant to giving a more natural semantics in the case of vagueness, but for simplicity I'll confine myself here to chains.
	19
	19

	Lemma 7.3 (Nontriviality of fiber-stages). For all g and μ, Rgμ ≠0; indeed, for all g and μ, Rgμ has a member vgμ such that (∀w ∈ Rgμ)(Vg,μl ≤K w).
	23 Details: Let Rg be the intersection of all the Rg,K. Trivially, for every κ, Rg C Rg,K; we need
	20
	It's worth making explicit the values that result. In general,
	1A⊲ B|g,v —
	1 if (∃S ∈ Zg,v)(∀w∈S)(if |A|g,w — 1 then |B|g,w — 1)
	Defining ► from ⊲ as in Section 3, |A ► B|g,v has the same 0 clause, but is 1 iff (35 e Zg,v)(Vw e 5)(|A|g,w ≤ |B|g,w).
	(*) | A ⊲ B|g,Vg =
	1 if (∀w ∈ Rg)(if |A|g,w — 1 then |B|g,w — 1) 0 if (∀w e Rg)(|A|g,w — 1 Λ|β|g,w — 0)
	and
	(**) |A ► B |g,vg =
	1if(Vw e Rg)(|A|g,w<|B|g,w)
	Also, since the w in Rg are precisely the valuations of form valg[Z] where Z is a chain of members of Rg, we also have
	| A ⊲B |g,vg =
	1 if (∀w∈Rg)(|A ⊲ B|g,w=1)
	and similarly for ► .
	THEOREM 7.5 (Regularity for fibers). For any L+ sentence A and any g, | A|g,vg — 1 iff (∀w ∈ Rg)(|A|g,w — 1),and |A|g,vg — 0 iff (∀w e Rg)(|A|g,w — 0).
	21
	21

	(b) Immediate from the Regularity Theorem and the 1 clause of (*) and (**).
	Theorem 7.7 (Classical collapse for ⊲ and ►, preliminary statement). If |A v ­A|g = 1 and | B v -B|g = 1 then for all v in Rg, | A ⊲ B |g,v = |A ► =|A ⊃ B| g,v
	§8. The base space. The construction of the base space has some analogy to the construction of the fibers. But instead of relativizing the construction to a given evaluation v (which would be the analog of what we did with the fibers), we make use of the prior construction of a privileged v for each g, viz. the base point vg. We also make modifications reflecting the fact that our e -boosters are only two-valued.
	DEFINITION 8. 1 . boost[P](A e B)=
	1 if (3G∈ P)(∀g ∈ G)(if |A|g = 1then |B|g = 1)
	Obviously since all members of P and all valuations of form vg are transparent then boost[P] is transparent.
	22
	Lemma 8.3 (Nontriviality of base stages). For all a, Ja = 0; indeed, for all a, Ja has a member ga such that (Vh e Ja)(ga <K h).
	Foreach g e J, g is boost[P] forsome P e P; pickoneandcall it Pg. As with thefibers, (ii) of the Fixed Point Corollary means that we have in effect a modal-like neighborhood semantics on the base space, with the boosters in J as “worlds”: for each world g the g-neighborhoods are the members of Pg (or their supersets). For @ the sole neighborhood is J; but typical “worlds” within this neighborhood have much smaller neighborhoods, to which those worlds needn't belong.
	g(A,B)=
	1 if (3G e Pg)(Vh e G)(if |A\h = 1 then |B\h = 1)
	(I'm using g(A, B) as an alternative notation for g(A — B), to lessen the possibility of confusion with the value of A — B at g.) And so
	|A — B|g,v =
	1 if (3G e Pg)(Vh e G)(if |A|h = 1 then |B|ft = 1)
	(Note that in the last two conjuncts of the 0 clause we have v, not vg.)
	23
	23

	only is @ reflexive but P@ is {J},
	|A →B|@ =
	1 if (∀h e J)(if |∀|h = 1 then |B|h = 1) 0if|A|@ = 1 and |B|@ = 0
	Observation on Modus Ponens:
	(1) : If (∀h ∈ J)(|A|h = 1) then |A→ B|@ is 1 iff (∀h ∈ J)(|B |h = 1).
	24 So one way to define the classicality predicate mentioned near the end of Section 4 is as
	24
	Part 3. VALIDITY AND LAWS
	This is not quite my ultimately preferred view. on philosophical grounds I prefer to think of validity as a computationally tractable relation, in the sense that for any recursively enumerable
	25
	25

	25
	25

	It will be convenient to introduce a notion I'll call M-validity (Γ \=M B):
	set Γ of formulas, the set of formulas B that validly follow from it should also be recursively
	26
	It is easily seen that both modus ponens for ⊲ and modus ponens for→ are valid (M -valid for each M ), in the sense of (M -)validity I've defined. I remarked before that in any naive truth theory meeting extremely minimal conditions, we can't have condi­tionals that obey both modus ponens and unrestricted conditional proof. Indeed, Curry's paradox shows that modus ponens requires failure of conditional proof even in the special case when there are no side premises (or none beyond the arithmetic used to cons
	Proposition 9.2 (Limited →-Introduction).
	26 Suppose that not (Γ, B ⊨ univ C); then for some h ∈ J , | Γ |h = |B|ft = 1 and |C |h < 1. {{h}} is an -chain; let g be the →-booster it generates. Then |T →Γ|g = 1 and |B→ C|g < 1.
	27
	27

	A ⊨ - A →C. But let A be the sentence K * from the end of Section 8, and C be ⊥|K*|@ = 1, but there are g ∈J for which |­K*|g = 1, so |­K* ⊥|@ isn't 1 (indeed,
	is not universally valid. (Both this rule and modus  do preserve universal validity, but that is much weaker.27)
	27 We don't even have the meta-rule that if Γ ⊨ univ B and Γ ⊨ univ B→ C then Γ ⊨ univ C, when Γ ≠ 0. Taking Γ to be {B}, that would yield the meta-rule that if B = univ B→ C
	28
	(Super-validity obviously entails universal validity, and for single sentences, super-validity
	29
	29

	I turn now to structural rules, reasoning by cases, and the collapse of both conditionals to
	Classical collapse: All conditionals are equivalent to d in classical contexts, that is, on the assumption of strong excluded middle for their antecedents and consequents.
	30
	Especially in the case of (1), there are related results that derive weaker equivalences
	31
	31

	occurrences of A that are not in the scope of any ⊲, then ⊨M,s XA ↔↔XB; it is established by noting that =M,s A ↔↔ B corresponds to A and B having the same value at all base nodes (what we might call base-equivalence), and proving (in analogy to the proof of the equivalence theorem) that base-equivalence is pre­served under embedding of all connectives other than ⊲
	32
	It shows a “near-redundancy” of‘T ⊲’: it is eliminable when not in the scope of a ► or ⊲. More generally,
	| A ⊲ B|h =
	1 if for all v in Rh , | B|h,v = 1 0 if for all v in Rh, | B|h,v=0
	But by regularity that just means that for all h e Y ,IA ⊲ B |h = |B |h .So | (A ⊲ B) ↔↔ B|g = 1. □
	33
	33

	(c) and (d) These are equivalent, by Limited →-Introduction and L1b. To establish (c): For any g, suppose |A|g = 1 and |(A Λ C) ⊲ B|g = 1. By the second equality, for every v in Rg, if |A Λ C|g,v = 1 then |B|g,v = 1. By the first equality and Regularity, | A|g,v = 1 for all v in Rg. From these we get that for every v in Rg if |C|g,v = 1 then |B|g,v = 1, and so |C ⊲ B|g = 1. □
	34
	(c) If |­(A ⊃ B')|@ = 1, then since @ is in the only member of P@, @(A, B) < 1. Also | A|@ = 1 and |B|@ = 0. These things together give that | A B |@ = 0. □
	35
	36
	(if |B|h = 1 then |C|h = 1) then (∀h e G)(if |A|h = 1 then |C|h = 1); so for any g ∈J, if g(B, C) = 1 then g(A, C) = 1. Now for any g ∈J , if |A C|g = 0 then g(A, C)<1, |A|g = 1, and |C|g = 0; so by what's been shown we have g(B, C) < 1, |B|g = 1, and |C|g = 0; so |B C|g = 0. □
	37
	37

	(b) and (c): For any g e J , suppose |T (A >> B)|g = 1. (Recall that the definitions
	28 To get analogs of this with in place of ⊲ one needs to beef up the antecedent ­(A >>C) to
	38
	38

	(b) Suppose that for every t (in L+M), |A(t)→ B(t)|@ = 1. Then for each t, and
	39
	39

	The proofs are rather trivial given the results already established, but just to be explicit:
	29 Some failures, such as “If x is A, then if all A are B then x is B ”, can be handled by the special convention that in English, “If A then if B then C ” is usually read as meaning “If A and B then C ”. (There seems to be no natural such convention that would have avoided the problem posed by restricted quantification.)
	40
	40

	theory;30 indeed, I'd expect, and hope for, variations that give rise to clear improvements in the laws. But what about the prospects for a radically different approach?
	30 One variation that will be obvious to those familiar with Field (2008) is to use revision-theoretic constructions for the fibers and/or the base-space, modeled after the fixed point constructions used here. For instance, to construct the fiber for a given →-booster g, we'd let
	41
	41

	sentences,31 and CK is incompatible with that since it requires the Curry sentence to behave like the Liar sentence. (III) must go because it requires
	31 It suffices to show that both lead to [(A→B) Λ­ (A→B)]→⊥ , since by (CONTRAP)
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	in print for logics that come closest to CK (though they don't come very close at all) are my own in (2008) and several much earlier ones of Ross Brady's, most of which are discussed in his (2006). Neither he nor I claimed to give an account of account of restricted quantification; and if one had defined the restricted universal quantifier in terms of the conditionals he or I provided, the accounts would have been ludicrous.
	the task at hand, since it's been known for many years that a naive truth theory is consistent even in Lukasiewicz continuum valued logic (see White, 1979); the problem is that in that logic the theory isn't ω-consistent, that is, consistent with a standard model of syntax (see Restall, 1992), which also prevents a consistent naive satisfaction theory with the usual compositional rules for the quantifiers (see Hajek et al., 2000). It was partly to prevent such pathologies that I insisted on a conservativene
	43
	43

	Part of the problem with using either the logic of Field (2008) or any of the main logics of Brady (2006) to define restricted quantification is that in them, the single-conditional is contraposable (as it is in CK). If one is intent on a single-conditional approach, one might do better exploring logics where it isn't (even in rule form). Andrew Bacon (2013) has recently made considerable progress along these lines: he uses a novel construction based on the Banach Fixed Point Theorem. (He presents the const
	35 Of course as he notes, one can easily define a contraposable conditional from a noncontraposable one; but the new one may not validate the laws that made the old one attractive.
	44
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	(I use ⊲ rather than ► for their second conditional since they take it to be noncontra­posable.) So far very much like the account in this paper. However, though the second conditional in Beall et al. (2006) obeys the >-weakening rule and hence delivers the rule form of (II), it doesn't satisfy the stronger >-weakening axiom and so does not deliver the full (II).
	37 He didn't because the account in Beall et al (2006) hasn't actually been shown consistent with naive truth theory, it is merely conjectured to be.
	45
	45

	both A and not B”to“AllA are B”.38 (Orrather: a paraconsistent dialetheist can keep these inferences only by disallowing modus ponens for ⊲ and thus disallowing the inference from “All A are B” and “c is A”to“c is B”.) These limitations are fairly obvious, and presumably anyone with an independent commitment to accepting both the Liar sentence and its negation will be prepared to swallow them. But they strike me as a heavy intuitive cost, and this seems to me to give a reason to prefer rejecting both the Li
	BIBLIOGRAPHY
	38 There is no obvious bar to a paraconsistentist accepting (II) and (V), as long as she denies the




