
This is an electronic version of a paper published in Review of Symbolic Logic,
http://dx.doi.org/10.1017/S1755020313000312

Published online: 14 October 2013

copyright Cambridge University Press 2013



THE REVIEW OF SYMBOLIC LOGIC,Page1of45

NAIVE TRUTH AND RESTRICTED QUANTIFICATION: 
SAVING TRUTH A WHOLE LOT BETTER 

HARTRY FIELD
New York University and University of Birmingham

Abstract. Restricted quantification poses a serious and under-appreciated challenge for nonclas­
sical approaches to both vagueness and the semantic paradoxes. It is tempting to explain 
“All A are B ”as“Forallx ,if x is A then x is B”; but in the nonclassical logics typically used 
in dealing with vagueness and the semantic paradoxes (even those where ‘if ... then' is a special 
conditional not definable in terms of negation and disjunction or conjunction), this definition of 
restricted quantification fails to deliver important principles of restricted quantification that we'd 
expect. If we're going to use a nonclassical logic, we need one that handles restricted quantification 
better.

The challenge is especially acute for naive theories of truth—roughly, theories that take True(‹A›) 
to be intersubstitutable with A, even when A is a “paradoxical” sentence such as a Liar-sentence. 
A naive truth theory inevitably involves a somewhat nonclassical logic; the challenge is to get a logic 
that's compatible with naive truth and also validates intuitively obvious claims involving restricted 
quantification (for instance, “If S is a truth stated by Jones, and every truth stated by Jones was 
also stated by Smith, then S is a truth stated by Smith”). No extant naive truth theory even comes 
close to meeting this challenge, including the theory I put forth in Saving Truth from Paradox. 
After reviewing the motivations for naive truth, and elaborating on some of the problems posed 
by restricted quantification, I will show how to do better. (I take the resulting logic to be appropriate 
for vagueness too, though that goes beyond the present paper.)

In showing that the resulting logic is adequate to naive truth, I will employ a somewhat novel fixed 
point construction that may prove useful in other contexts.

Part 1. INTRODUCTION
§1. Restricted quantification. Here are some laws we would expect universal 

restricted quantification (“All A are B ”) to obey:

(I) : (For all x :) If all A are B , and x is A, then x is B .
[Hence presumably: (I-) If all A are B , and everything is A, then everything 
is B.]

(II) : If everything is B , then all A are B
(III) : If all A are B, and all B are C , then all A are C

(IIIvar ): If all A are B, and not all A are C, then not all B are C
(IV) : If all A are B, and all A are C , then all A are both B and C

(IVvar ):  If all A are B, and not all A are both B and C, then not all A are C
(V) : If not all A are B , then something is both A and not B

(VI) :  If something is both A and not B, then not all A are B .
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I'm inclined to add that restricted quantification contraposes:

(C): All A are B if and only if all not- B are not- A.

But even if one is suspicious of this in general, the principles that can be derived by 
applying (C) to the above principles seem highly compelling. For instance, by taking 
instances of (I) and (II), applying (C), and using the redundancy of double negation, one 
gets the following:

(Ic ): If all C are D, and x is not D, then x is not C
(IIc ): If nothing is C then all C are D.

I think these ought to be on our “wish list” even if (C) isn't assumed.
All of these laws are of course validated in classical logic, when restricted quantification 

is handled in the standard way. But in a “naive theory of truth” (to be defined in the next 
section) the logic can't be fully classical, and the challenge is to get a nonclassical logic 
that is both adequate to naive truth and that validates these laws. I'll also assume that ‘if ...
then' obeys modus ponens, and other obvious laws such as that from A and ­  B one can 
infer that it is not the case that if A then B . I also require that the logic allow reasoning
by cases, taken to include ∃-Elimination as well as v-Elimination. And I'll assume that 
the logic includes substitutivity of identity and the standard structural rules, including the 
transitivity of consequence. (I don't mean to suggest that these assumptions are beyond 
discussion, but here is not the place.)

I assumed until recently that in order to maintain “naive truth” (to be explained shortly) 
I was going to have to qualify some of these laws slightly, so that the challenge would 
simply be to get a logic for naive truth that gave a pretty good approximation to these laws. 
That would be far more than one gets in extant theories of truth (including the theory in 
Field, 2008). But to my surprise I discovered that it's possible to get all of the laws above 
(including (C)) to hold unrestrictedly in a naive theory of truth.1

For handling vagueness as well as for handling truth, there is reason to take nonclassical 
logic seriously, and there's also reason to want the same laws of restricted quantification. It 
turns out that this is problematic there too: the nonclassical logics most often discussed 
for vagueness are (i) Kleene logics, which have no remotely reasonable notion of re­
stricted quantification; and (ii) Lukasiewicz logics, which though coming a lot closer, do 
not validate all of the laws listed. (If one defines restricted quantification in them in the 
obvious way, as ∀x(Ax →Bx), then they fail to validate (I) and (I-) and (Ic), (III), 
(IIIvar), (IVvar), and (VI), though (as we'll see in Section 12) they do obey laws which 
might perhaps be deemed “close enough approximations”.) In any case, I've argued else­
where (2003 and 2004) that the Lukasiewicz logics are simply inadequate for vagueness, 
for two reasons, the most serious of which is that they enable one to define a bivalent 
“super-determinateness” operator that obviates their whole point. The logic to be advocated 
below avoids both problems, as well as handling restricted quantification much better. 
So it's one that recommends itself for vagueness independently of issues about the semantic 
paradoxes; the fact that it handles the paradoxes too is an added plus for those who think a 
unified account is a good thing. But I will say little more about vagueness in this paper.

1 The theory that results does share many features with the theory of Field (2008). For instance, 
though I won't discuss this here, we can define a determinateness operator, and iterate it 
transfinitely, in the same way as in that book, and the resolution of the “paradoxes of determinate 
truth” would carry over without significant change.

2



3

The motivation for trying to keep the above laws (together with other natural laws of 
restricted quantification that will emerge) isn't just that they “sound right”. To those of us 
who are used to thinking in classical contexts, many things initially sound right that, once 
we take truth or vagueness seriously, are suspect except in restricted form. The motivation, 
rather, is that it is important to be able to reason with restricted quantifiers, and without 
laws that at the very least approximate these, our ability to so reason would be crippled. 
In Part 3 I will develop the logic of restricted quantifiers further than is required just 
to validate the laws above, in an effort to give initial plausibility to the idea that the 
construction yields a logic in which we could actually reason.

I by no means claim that the resulting logic is the best possible. Indeed, if one takes 
a “best possible” logic to be one whose connectives faithfully represent the connectives 
of natural language, the logic I will advocate is ruled out from the start. For though its 
conditional ‘A → B' differs from the “material” conditional ‘­ A v B’ (as it must for
‘A → A’ to come out valid when ‘­ A v A’ isn't), still I've deliberately designed the ‘→’ 
so that ‘A → B’ will reduce to ‘­ A v B' in contexts where its antecedent and consequent 
behave classically. That guarantees that my logic will be subject to the oddities that the 
material conditional has in classical contexts: for instance, it will legitimize such bizarre- 
sounding claims as ‘If I run for President in 2016, I'll win'. My account, then, is based 
on the fiction that the material account of the conditional is fine for conditionals whose 
antecedent and consequent behave classically. The reason I've based my account on this 
fiction is that I don't know the nonfiction: I know of no adequate account of how the 
‘if...then' of English does behave, even when its antecedent and consequent are classical. 
If I had such an account, I'd probably have tried to generalize that ordinary conditional 
rather than the material conditional to nonclassical contexts, and then tried to show how 
to combine that generalized conditional with naive truth and restricted quantification. 
(Or perhaps I'd have tried to generalize both: the material conditional, after all, is what 
is of primary use within mathematics.) But I hope and expect that the methods used for 
combining naive truth and restricted quantification with a nonclassical generalization of 
the material conditional will prove helpful to the future project of combining naive truth 
and restricted quantification with a nonclassical generalization of the conditional of natural 
language. The aim of this paper is to make progress, not to provide the ultimately best 
possible theory.

§2. Naive truth and satisfaction. By a naive truth theory, I mean a theory containing 
a truth predicate for its own sentences, in which a sentence attributing truth to a sentence 
in the language of the theory (that is unambiguous and free of indexical elements) is equiv­
alent to the sentence itself, in the sense of being fully intersubstitutable with it (outside of 
quotation marks and other opaque constructions).

More exactly: when A and B are sentences, call A equivalent to B if, for any X and Y 
such that Y results from X by replacing an occurrence of A with B or vice versa (outside 
of opaque contexts), then Y is inferable from X and vice versa. (Obviously this suffices for 
multiple substitutions.) The naivety condition is that True(‹A›) is equivalent to A in this 
sense, where ‹A› is a standard name of A, taken to denote A “as a matter of logic”.2 For 
instance, in such a theory

If t is a complex term denoting A “contingently”, such as “the last sentence Joe uttered”, then 
of course True(t) won't be equivalent to A in the sense above. Still, either of X and Y will be 
validly inferable from the other together with the assumption that the last sentence Joe uttered 
is A.
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(i) If <A> and <B> are true then <C> is true
will be inferable from

(ii) If A and B then C,
and vice versa, when A , B and C are (unambiguous etc.) sentences in the language of the 
theory. Informally, the idea is that it would be a mistake to believe (i) but not (ii), or vice 
versa.

Actually I require a bit more of a naive truth theory:

(1) I require that it contain a naive satisfaction predicate for its own formulas. That's 
a 2-place predicate meeting the following strengthened naivety condition: that for 
any formula A in the language with at most one free variable x, Satisfies(o, <A(x)>) 
is intersubstitutable with A(x/o). (I assume that the language contains an adequate 
means of coding finite sequences of objects with single objects (and then decoding 
them), in which case a satisfaction predicate for 1-place formulas suffices for a 
satisfaction predicate for formulas with arbitrarily many free variables.) From such 
a naive satisfaction predicate, a naive truth predicate is definable.3

(2) I require that the theory validate some obvious composition principles, for example, 
that a conjunction is true if and only if both conjuncts are true, or the analog of this 
for satisfaction. (Such principles are generalizations whose instances are already 
guaranteed by what was said above; but delivering the generalizations goes beyond 
delivering the instances.)

(3) I require that certain schemas from the mathematics of the ground language hold 
even for instances containing new vocabulary such as ‘True' and ‘Satisfies'. I won't 
try here to say in general which such schemas should extend, but one that should is 
the induction rule A(0), ∀n[A(n) ⊃ A(n + 1)] ⊧ ∀nA(n). (Similarly when ‘⊃’ is 
replaced by any of the other conditionals I’ll employ, such as ‘→’.)

But the challenge to providing an adequate naive theory depends little on these extra 
requirements. By and large, once one has a reasonable theory with a naive truth predicate, 
it’s easy to extend it to include a naive satisfaction predicate, and to include the required 
composition principles, and to validate an extended induction rule. That will be so for the 
construction in this paper.

Because of the possibility of “paradoxical sentences”, for example, sentences asserting 
their own untruth, a naive truth theory is only possible in nonclassical logics. In particular, 
the logic in question (if it meets very minimal conditions)4 must be either

paraconsistent: it must allow acceptance of some sentences of form A ∧ ­ A;5 or 
paracomplete: it must allow rejection of some sentences of form A v ­ A.

3 Naive theories of satisfaction are effectively equivalent to naive theories of properties: theories
that for every k-place formula and k-1 objects posit a property λxA(x; o1,...,ok-1), such that 
“o instantiates λxA(x; o1,...,ok-1)” is intersubstitutable with “A(o; o1,...,ok-1)”. The problem 
discussed in this paper could equally be viewed as a problem of how to deal with restricted 
quantification in a naive theory of properties.

4 Basically that it include substitutivity of identity and the standard structural rules, including the 
transitivity of consequence. I will be tacitly assuming these things about the logic throughout.

5 This is a somewhat narrow reading of ‘paraconsistent', since some relevance logicians have 
advocated paraconsistent logics in connection with a notion of consequence not directly 
connected with constraints on acceptance and rejection; but it is this narrower version of 
paraconsistency (“paraconsistent dialetheism”) that is relevant to naive truth.
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(Rejection is to be taken as a state that precludes acceptance.) Paraconsistent logics with 
reasonable laws of conjunction will admit acceptance gluts, that is, they allow the simul­
taneous acceptance of both a sentence and its negation. So in these logics, accepting the 
negation of a sentence does not require rejecting the sentence, given that rejection precludes 
acceptance. Dually, paracomplete logics with reasonable laws of disjunction will admit 
rejection gluts, that is, the simultaneous rejection of both a sentence and its negation. 
So in them, rejecting a sentence does not require accepting its negation. (In particular, 
rejection of some instances of excluded middle doesn't require accepting the negations of 
those instances.)* 1 2 * * * 6 The logic could be both paraconsistent and paracomplete, either (i) by 
allowing accepting both A and ­  A while simultaneously rejecting both B and ­ B for a B 
that differs from A, or (ii) by allowing for either accepting both A and ­  A or for rejecting 
them both (though of course, not doing both at once).

There should be no worry that the use of a nonclassical logic will upset standard mathe­
matics, because we will be able to confine the nonclassicality so that it doesn't arise within 
standard mathematics. (We can use the truth or satisfaction predicate to extend standard 
mathematics, for example, by extending the induction rule; the extension will involve some 
nonclassicality, as it must to maintain naivety while avoiding paradox. But the unextended 
mathematics will be entirely classical, as indeed will large parts of the extension: each part 
of the standard Tarski hierarchy will be a classical fragment of the extended mathematics.)

The logic I will be suggesting in this paper is paracomplete but not paraconsistent: it 
permits rejection gluts but not acceptance gluts. As I'll note in the final section, the goal 
of maintaining the above menu of laws of restricted quantification is not achievable in a 
paraconsistent naive theory, and I'm skeptical that one can come satisfactorily close.

I take it that the idea of paracomplete logic for dealing with the semantic paradoxes 
is highly natural. Let Q abbreviate a Liar sentence, that is, a sentence asserting its own 
untruth, that is, a sentence equivalent to the claim ­ True(<Q>) where <Q> is a term 
denoting Q. It's natural to think that it would be absurd to assert

6 Both sorts of logics allow both acceptance gaps and rejection gaps , but that has nothing special 
to do with these logics: any reasonable logic will allow for the nonacceptance of both ‘This coin 
will land heads' and its negation, and also for the nonrejection of both.

Many have tried to characterize paraconsistent and paracomplete approaches by saying that 
paraconsistent logics are those that allow for the acceptance of truth value gluts (sentences that 
are both true and false, where falsity is truth of negation) and that paracomplete logics are those 
that allow for the acceptance of truth value gaps (sentences that are neither true nor false). This 
misfires for a number of reasons.

(1) There are well-known truth theories in classical logic (hence not paracomplete) that accept 
truth value gaps; and duals to these, also in classical logic (and hence not paraconsistent), 
that accept truth value gluts. (Of course, neither of these can be naive truth theories, since no 
classical theory can be naive.)

(2) In typical naive truth theories (those where ­ ­  A is equivalent to A), there is no distinction
between truth value gaps and truth value gluts: the “gap” statement ­ True(<A>) ∧ 
­ True(<­  A>) is equivalent to ­  A ∧ ­ ­ A, hence to ­  A ∧ A, hence to the “glut” statement 
True(<A>) ∧ True(<­  A>). There is only a notion of a “gap/glut”, which is as much one as 
the other.

Naive paracomplete theories (unless they are paraconsistent as well) do not accept truth value
gaps (equivalently, truth value gluts), indeed they reject them. It is the issue of whether to accept
gap/gluts or to reject them that differentiates the paraconsistent and paracomplete approaches. 
To put the distinction in terms of the acceptance of truth value gluts versus the acceptance of truth 
value gaps is totally misguided.
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(i) Q A­ True(<Q>):

the second conjunct seems to undermine the first. Similarly, it's natural to think that it's 
absurd to assert

(ii) True(<Q>)∧­ Q :

again, the second conjunct seems to undermine the first. But in (i) the two conjuncts 
are equivalent; similarly in (ii), assuming the redundancy of double negation. Given this, 
it seems that each of

(i*) ­ True(<Q>)
(ii*) True(<Q>)

must be absurd, so we should fully reject them. This gives us a rejection glut. And with 
the further natural view, that if we fully reject each of two claims we should fully reject 
their disjunction, we get paracompleteness in the form I officially defined it. (Of course, 
committed proponents of alternative treatments of the paradoxes will reject some of the 
assumptions I've called “natural”, but my goal is only to provide initial motivation for the 
approach I'll be taking.)

It's well-known that no logic (meeting the assumptions of note 4) can accord with 
naive truth if it has a conditional that both obeys modus ponens and allows unrestricted 
conditional proof: that's the lesson of Curry's paradox. Since I'm keeping modus ponens 
without restriction, there will need to be restrictions on conditional proof; this will allow
there to be valid rules A ⊧ B for which the corresponding conditional is not valid. There 
will however be useful restricted versions of conditional proof; indeed, the natural way to 
establish the laws mentioned in Section I (which are all valid conditionals, not merely valid 
rules) will be by restricted conditional proof.

§3. The restricted quantifier and the conditional. I'll use the notation ∀x(Ax/Bx) 
for “All A are B”. But rather than taking this as a primitive binary quantifier, I'll take 
it to be defined from the ordinary universal quantifier and a conditional ►: ∀x (Ax/Bx") 
will abbreviate∀x(Ax ► Bx). That this can be done isn't a substantive assumption: one 
could equally well take the restricted quantifier as primitive and define A ► B as ∀x (A/B) 
where x is a variable not occurring in either A or B. (Or if one doesn't like quantification 
by a variable not free in the formulas to which the quantifier is attached, define it as 
∀x(x = ∧ A A/x = x ∧ B).) With only very minimal assumptions on how the conditional 
and the restricted quantifier behave, it's easy to see that whichever of the two one starts 
with, if one defines the other in terms of it as above and then does the reverse definition, 
then one gets something equivalent to what one started from. I prefer defining the restricted 
quantifier in terms of the conditional only because it makes the development to follow more 
perspicuous.

What would be a substantive assumption is that the conditional that's interdefinable with 
universal restricted quantification is the same conditional as the ‘if ... then' that appears in 
proposed the laws of Section I.7 In order to avoid such an assumption, let's use a different

7 For what it's worth, those who think of the semantics of ‘if...then' as given in part by
Adams' Thesis (hence differing from ⊃) are likely to think that in classical contexts restricted 
quantification is to be explained by the material conditional, that is, that ► is just ⊃. So they will 
share the view that ► differs from ‘if...then'. This point may not be directly relevant to the present
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(I-►): [(A ► B) ∧ A]→B
(II-►): B→(A ► B)

(III-►): [(A ► B) ∧ (B ► C)]→(A ► C)
(III-►var): [(A ► B) ∧­ (A ► C)]→­ (B ► C)

(IV-►): [(A ► B) ∧ (A ► C)]→[A ► (B ∧ C)]
(IV-►var): [[(A ► B) ∧­ A ► (B ∧ C)]]→­ (A ► C)]

(V-►): ­ (A ► B)→(A ∧­ B)
(VI-►): (A ∧­ B)→­ (A ► B)
(C-►): (A ► B)↔(­ B ►­  A), where C ↔D abbreviates (C →D) ∧

(D→C).

A look at (I-►) makes clear why I wanted two separate conditionals: no naive truth theory 
satisfying my background conditions can have the analog of (I-►) with both conditionals 
the same. (For any conditional the alleged law [(A » B) ∧ A] » B is called pseudo 
modus ponens for and it is well known that we can't have both it and genuine modus 
ponens for » (the rule of inference from A ∧ (A » B) to B) without triviality, in a naive 
theory satisfying the conditions of note 4.) In order to have a chance of obtaining (I-►) 
(in conjunction with modus ponens for ►), the inference from A →B to A ► B must fail.

A look at the laws also reveals that unlike ►, we better not take to be in general 
contraposable: we better not accept the inference from A →B to ­ B →­A in general, 
though it will be fine when A isclassical. 8Here,insketch. are three routes to the conclusion 
that the general contraposability of would cause difficulties:

(1) (Perhaps the most obvious, using (VI-►):) Were it contraposable, one could get 
from (VI-►) to (A ► B)→­ (A ∧ ­ B), and in particular (A ► A)→
­ (A ∧ ­ A); hence assuming A ► A and modus ponens for →, we'd have 
­ (A∧ ­ A). But that is equivalent to excluded middle if we assume a deMorgan's 
lawandtheredundancyofdoublenegation;soifweassumethelatterlaws,asIwill, 
a logic without excluded middle that keeps (VI-►) can't allow to contrapose.

project, given that that project assumes an ‘if...then' that reduces to the material conditional in
classical contexts (see the end of Section 1); still, it might make the suggestion of an ► distinct
from ‘if ... then' seem less ad hoc.

8 It's perhaps worth noting that if we were engaged in giving a theory of the '→' that faithfully 
reflected the ‘if...then' of English, we wouldn't want ‘if ...then' to contrapose even in contexts 
where the antecedent and consequent are classical. (The noncontraposability of the English 
conditionalis well-known: for example, from ‘If Clinton won't be the next President, Bachmann 
won't either' I can't infer ‘If Bachmann will be the next President, Clinton will too'.) As with the 
point made in the previous footnote, this is only indirectly relevant in the present context, but it 
doesn't seem entirely irrelevant.

notation for the latter; I'll use →. It will turn out that there are reasons for taking the two 
conditionals to be distinct from each other, and also to be distinct from the conditional ⊃ 
defined by ­  A v B. Nonetheless, we'll see that both these new conditionals are equivalent 
to ⊃ “in classical contexts”, on a suitable explication of that phrase. As a very special 
case, when neither A nor B contains ‘True' (and we don't allow for vagueness), any one 
of A →B, A ► B and A ⊃ B will be validly intersubstitutable with any other.

Given the definition of ∀x(Ax/Bx) in terms of ►, it's clear what's required of → and 
► for the laws of Section 1 to be valid; it's that all instances of the following schemas be 
valid:
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(2) (Using (I-►) and others instead of (VI-►):) (II-►) and (C-►) lead to ­ A→
(A ► B), but this and (I-►) will lead to [A ∧­ A] →B by laws we will surely want, 
which by contraposition of would yield ­ B→­ (A ∧ ­ A). So if B is absurd
we'd get ­ (A ∧­ A) by modus ponens, which again leads to excluded middle by 
deMorgan's and double negation.

(3) (Using (III-►) and others, but not (I-►) and only the rule form of (VI-►):) Let T 
be a logical truth. The rule form of (VI-►) yields ­ (T ► -T). In the contraposed 
form of (III-►), let A be T and C be ­ ⊤; then applying modus ponens we get 
­ [(T ► B) ∧ (B ► ­ T)]; or using deMorgan's, ­ (T ► B) v -(B ► ­ T). Using 
(V-►) twice together with obvious laws of disjunction we get ­ B v B.

(All the routes seem to require the deMorgan's law ­ (A ∧ B) ⊧ ­ A v ­ B, so I suppose 
one might try keeping contraposability and rejecting that; it isn't an option I've explored.)

Once we realize that the ‘if ... then' may not be contraposable, the question arises as to 
which of the contrapositions of principles on our original list ought to hold. I think that 
there is a strong intuitive case for wanting the following additions to our list:

(II*): If not all A are B, then not everything is B.
(IV*): If not all A are both B and C, then either not all A are B or not all A are C.
(V*): If everything is either not A or B, then all A are B. (That is, if nothing is both A 

and not B then all A are B.)9

We probably also want

(C*): Not all A are B if and only if not all not-B are not-A

Adding all these to our original list amounts to strengthening (II-►), (IV-►) (V-►) and 
(C-►) by replacing → with →→and ↔ with ↔↔, where A→→B abbreviates
(A →B) ∧ (­ B →­A) and A ↔↔ B abbreviates (A→→B) ∧ (B→→A). (In fact,
I'm inclined to think that even (C) and (C*) together understate the intuitive requirements: 
we should have that “All A are B” and “All not B are not A ” should be fully equivalent, 
that is, intersubstitutable in all contexts, even inside both sorts of conditionals.) My account 
will deliver all these things.10

Although I prefer to define restricted quantification in terms of a contraposable ►, it is 
convenient to define that in turn from a noncontraposable conditional ⊲: A ► B will be

9 Note that (V*) entails (IIc). Similarly, the old (V) entails the following analog of (IIc):

(II*c) If not all A are B , then something is not B.

10 One has two choices for a restricted existential quantifier “Some A are B”: either ­ ∀x(Ax/­ Bx) 
or ∃x(Ax∧Bx). Laws (V) and (V*) will be seen to entail that the first of these implies the second 
outside of ► contexts. I find the second (“weaker”) reading of “Some A are B” far more natural, 
but to avoid any confusion, I'll avoid the locution “Some A are B” in this paper.
There are also two choices for reading “No A are B”, namely ∀x(Ax/­ Bx) or ­ ∃x(Ax ∧ Bx). 
In the case where Ax is “x = x ∧ Q” (where Q is the Liar sentence), the first makes “No A are 
A ” and “No A are not A ” fully acceptable; the latter doesn't, but doesn't make their negations 
acceptable either. I'm inclined to go for the latter reading here too, making “No A are B” the 
negation of “Some A are B” rather than the equivalent of “All A are not B”; but I'll also avoid 
the locution “No A are B” in what follows.
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(A ⊲B) ∧ (- B ⊲ ­  A), making its contraposability evident.11 But the main focus will be 
on ► rather than ⊲.

How will the contraposable ► connect to ⊃? Letting ⊧ mean validity (which won't be 
officially defined until Section 9, but I assume the reader to have a pretheoretic grasp of it), 
we will have the following:

Limited ► collapse:

Since → will obey modus ponens, we will also get weaker →-free forms of all these,
for example,

(iw) A ⊃ B ⊧A ► B.
The premise of (iv) (and its →-free weakening) is a slight strengthening of the claim that 
excluded middle holds either for A or for B. Such a premise is required, since we will want 
for instance Q ► Q but not Q ⊃  Q when Q is a Liar sentence. (We don’t need excluded 
middle for both A and B.)

It might seem tempting to summarize this limited collapse result by saying that A ⊲ B is 
weaker than A ⊃ B, but equivalent to it on the strengthened excluded middle assumption. 
However, such a summary would be unfortunate, for the limited result tells us nothing 
about how the embeddings of A ► B and A ⊃ B inside the conditionals → and ► 
(or ⊲) relate to each other. The equivalence of A and B, as defined in Section 2 in terms 
of intersubstitutivity, requires more than the validity of the biconditionals A ↔ B and 
­   A ↔ ­   B. Rather, equivalence as there defined relates to the validity of a different 
biconditional ⇔, defined from and ► together. Let A B be short for T →(A ► B), 
where T is any logical truth (e.g., ∀x(x = x)). ⇒will be contraposable.12 Let ⇔ be the 
corresponding biconditional, that is, (A⇒ B) ^(B⇒ A); then it will turn out that A is 
equivalent to B in the sense of valid intersubstitutability if and only if ⊧ A⇔B.

Given this, it's natural to say that A is at least as strong as B if ⊧ A ⇒B; by 
contraposability, A is at least as strong as B only if ­ B is at least as strong as ­ A. Also, 
we can call A logically comparable to B if either A is at least as strong as B or B is at 
least as strong as A. On this definition, A ► B will turn out in general to be incomparable 
to A ⊃ B. Nonetheless, A ► B will reduce to A ⊃ B in suitably classical contexts: that 
is, they will turn out to be equivalent given the assumption of a strong form of excluded 
middle for both A and B. (Indeed, A ⊲ B will reduce to A⊃ B as well.)

We wouldn't expect a “Limited →-collapse” result analogous to the above, because of 
the noncontraposability of →. (But as mentioned, we do get a collapse result for : it,

11 One reason for doing this is to allow anyone who doesn't think restricted quantification should
contrapose to define it in terms of ⊲ rather than ►. In addition, it is natural to investigate how our 
two conditionals and ► compare, and it is easier to do this if we first strip off the differences 
that result from the contraposability of the latter. Finally, there is a connective ⇒nc that can be 
defined from → and ⊲ together, that is useful even for exploring the properties of ►.

12 The conditional A⇒nc B, mentioned in the previous footnote, will be defined analogously as
T→(A ⊲ B), and is noncontraposable.

(i) ⊧ (A ⊃ B) → (A ► B)
(ii) ⊧(A ► B)→ ­ (A ⊃ B)

(iii) ⊧ ­  A ⊃ B)→ ­ (A ► B
(iv) T → [(A v -A) v (B v -B)] = (A ► B)→(A ⊃ B)
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like ► and ⊲, will reduce to ⊃ in classical contexts.) Still, we will get an analog of (ii) 
(and hence (iiw)) and of (iiiw):

⊧­  (A→B)→­ (A ⊃B) and
­  (A ⊃B) ⊧ ­(A→B).

Using these and the corresponding results for ► , we get
⊧­  (A →B)→­ (A ► B) and ­ (A ► B) ⊧ ­ (A→B)
(and the analogs of these with ⊲ in place of ►). We clearly cannot have A→ B  ⊧A ► B; 
that with (I-►) would yield pseudo-modus-ponens for ► . As it happens, we won't have 
even A →B ⊧ A ⊲ B, and we won't have A ► B ⊧ A→ B either.

More on these matters in due course.

§4. Validity, conservativeness, and general strategy. My concern is with getting 
a system of logic in which a great many laws involving truth, satisfaction, and the two 
conditionals are valid (i.e., have only valid instances; laws themselves I take as general 
schemas, showing valid logical forms).13 A proper model-theoretic account of validity 
involves quantifying over models (of an appropriate sort) fora language that includes these 
notions: the inference from r to B is valid if for all models of such and such kind, .... It's 
important for any such definition that the class of models be fairly wide in order not to 
declare valid things that really hold only in the particular models looked at.

Some restrictions on the language are inevitable, since in order to sensibly talk of truth 
we need to presuppose a background theory of the bearers of truth, viz. sentences; and in 
order to sensibly talk of the satisfaction of formulas (with arbitrarily many free variables) 
by finite sequences, we must presuppose a background theory not only of formulas but 
of arbitrary finite sequences of the objects that the theory recognizes. Presumably this 
background theory is to be stated in the ground fragment of the language L, that is, 
the maximal fragment L0 not containing ‘True' or ‘Satisfies' or the new conditionals. So 
in giving a model-theoretic account of validity for a language with ‘True' or ‘Satisfies' 
(and maybe the new conditionals), we must restrict attention to languages in whose ground 
fragments we can state the required background theory; I'll call such languages expres­
sively adequate. Moreover, we must restrict attention to models whose ground fragments 
satisfy this background theory. It is common to take the background theory to explicitly 
include arithmetic, and to identify expressions of the language with numbers by a Godel 
coding, though of course this is an inessential matter of convenience. I'll also assume that 
the models in question are ω-standard: when the background theory includes arithmetic, 
this means that the arithmetic part of the model is just the standard model of arithmetic. 
One rationale for requiring ω-standardness is that it guarantees that once we extend the 
model to cover a truth or satisfaction predicate, the rule of mathematical induction will 
apply even to formulas containing the new truth or satisfaction predicate.14 By a minimally 
acceptable model of an expressively adequate language I'll mean an ω-standard model of 
it that satisfies the aforementioned background theory. (This is a requirement on the ground 
fragment only.)

13 I will use upper case letters like A , B etc. ambiguously, both as schematic letters taking formulas 
as instances and as meta-linguistic variables over formulas. (Indeed, I've already done so.) The 
danger of this leading to confusion is almost nonexistent.

14 Another rationale for requiring w-standardness isn't for arithmetic per se, it's for syntax: it's to
ensure that for each o1 in the domain of the model, there can only be finitely many o2 in the
domain for which < o1,o2 > satisfies ‘x1 and x2 are expressions of L and x2 is partofx1'.
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To avoid notational complexity I'm going to restrict attention in the paper to languages 
that contain truth predicates but not satisfaction predicates. (So the languages won't be 
able to express the compositional laws for quantifiers.) This would be a serious limitation 
if there were any reason for the restriction beyond convenience and readability; but in fact 
it is routine if notationally messy to extend to satisfaction (and the compositional laws will 
then hold).

Here's an impressionistic sketch of the strategy to follow; it will be made more precise 
as I go on.

Let L be any expressively adequate language with ‘True', '⊲’ and Part 2 of the 
paper will be concerned with showing how any minimally acceptable classical model M 
for its ground fragment can in a certain sense be “extended” to a multi-valued model ψ(M) 
for all of L which (in a sense to be explained) validates the desired laws. The “extension” 
does not involve an extension of the domain: ψ(M) will have exactly the same domain as 
M. Moreover, individual constants will name the same things in ψ(M) as they do in M, 
and function symbols will stand for the same operations in ψ(M) as in M. Furthermore, 
predicates in the ground language will behave in the same way in ψ(M) as in M (though 
stating this carefully requires a correspondence between the two classical semantic values 
0 and 1 of M and two of the values 0M and 1M employed in Y(M)). The “extension” 
is simply that now sentences containing ‘True', "⊲’ and '→' get values—in many cases
nonclassical values, that is, values not corresponding to the two classical values.

An important feature of this procedure is
(CNSV): For any sentence of the ground language, its value in ψ(M) is 1M if its value in

M is 1, and its value in ψ(M) is 0M if its value in M is 0.
Call a set Γ of sentences of the ground language *-consistent if there is a minimally accept­
able classical model in which all its members are true. Since every model of form ψ(M) 
will “validate” the desired laws (in the sense to be explained), and will also “validate” any 
sentence that gets value 1M, it follows from (CNSV) that for every *-consistent set Γ  of 
sentences in the ground language, there is at least one nonclassical model which validates 
all its members and also validates the desired laws. Or as we could naturally put it:
(CONSERV): Any classically *-consistent set of sentences in the ground language is

*-consistent in the desired logic.
I take that to be a desideratum of an adequate theory.15

(We will actually be able to extend (CONSERV) in a useful way. For we will be able to 
define in the logic a predicate ‘classical' such that when you add to any classical argument 
the additional premise that all the formulas in it are classical, the resulting argument is valid 
in the new logic.16 Then the strengthened result is that if Γ is a classically *-consistent set

15 Does this conflict with well-known results on the “nonconservativeness of truth” (reviewed in 
Halbach, 2011 and Horsten, 2011)? The compositional laws will hold in the logic (or at least, they 
would if the construction were done with a satisfaction predicate, to allow the composition laws 
for the quantifiers to be expressed), and I've already noted that the rule of mathematical induction 
will extend to formulas containing ‘True' and ‘Satisfies'; in these circumstances, there's a sense 
in which the addition of ‘True' or ‘Satisfies' can't be a conservative extension. But what this 
means is simply that the analog of (CONSERV) with consistency instead of *-consistency can't
hold. The nonconservativeness results depend on including models that are not w-standard, and
by moving to *-consistency I've excluded them.

16 ‘Classical' must be defined using ‘True', and excluded middle does not apply to it; this is 
inevitable, for otherwise we could get a Liar-like paradox, from a sentence that asserts of itself 
that it is not both classical and true.
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of sentences in the ground language, then Γ augmented with the claim (CLASS) that all 
sentences in the ground language are classical is *-consistent in the new logic. So we 
can safely assume (CLASS) in the new logic, and when we do, all classical proofs in the 
ground language carry over to the new logic essentially unchanged.)

It's clear that to carry out the strategy I've outlined, we must run the construction in such 
a way that it works for every minimally acceptable ground model. I will do so.17 Since the 
construction will not depend on the details of the ground model, for much of the paper 
we will be able to hold that model fixed; but it is important to remember that it is really a 
construction for any ground model that meets the minimal presuppositions required for the 
notions employed (such as truth) to even make sense.

Part 2: THE CONSTRUCTION

§5. Overview; valuations, and boosters. Let L be a language with ‘True', '→' and 
'⊲’, whose ground fragment L0 is expressively adequate for the syntax of L, and let M 
be any minimally adequate classical model of L0. (The terminology was defined early in 
Section 4.) The goal is to construct some sort of multi-valued model ψ(M) based on M, 
in which sentences in the larger language L get values, and in which every sentence in the 
original language gets the same value it has in M. (I remind you that I'm sticking to ‘True' 
rather than the more general ‘Satisfies' only for notational convenience: the construction 
generalizes in a straightforward manner.)

To be more explicit, I'll take a classical model M for the ground fragment L0 to 
consist of

• a nonempty domain;
• an assignment of an object in that domain to each individual constant, and of an 

n-ary operation on that domain to each n-ary function symbol;
• an assignment of an n-ary 2-extension to each n-place predicate of the ground 

fragment, where by an n-ary 2-extension I mean an n-place function from the 
domain to the set {0,1}. (For classical models, value 1 corresponds to truth in the 
model, 0 to falsity in the model.) I'll also require that the 2-extension of‘=', which 
presumably is in the language, be the function that maps each pair of form <o,o> 
into 1 and each other pair into 0.

An assignment function for a ground model M will be a function that assigns to each 
variable of the language an object in the domain of M.

We can think of the ψ(M) to be constructed as based on an infinite set FM of 
“3-valued worlds”, all of which are just like M as far as ground level formulas are con­
cerned. (In particular, all have the same domain.) In calling a member of FM a “3-valued 
world”, I mean that at it, each formula of the full language L is to get one of three 
values, relative to M and to any assignment function s. (Despite the “worlds” terminology,

(On another matter, it makes no difference whether ‘all formulas in it are classical' is formulated
with a ⊃ or a ►, given Limited ►-collapse and the fact that ‘x is a formula in argument a’ is
bivalent.)

17 Acceptable ground models for standard set theories like ZFC are of special interest, since the 
construction in this paper can be carried out in them; nonetheless it would be inappropriate to 
consider only such models, since that would blur the distinction between mathematics and logic 
by making every sentence of the set theory come out valid.



13

18 Note that the space F M and the value space VM based on it depend on the starting model M. 
In particular, as the cardinality of M increases, that of F M and VM will typically increase. 
Everything here is model-relative; the construction will give no sense to any model-independent 
notion of a sentence's value. That is an additional reason why we should not try to associate any 
of the values with truth.

there isn't any real connection to necessity or possibility, just a formal analogy to modal 
semantics.)

An important remark about the three values: I will call them 1, 0, and 1/2, but you are 
not to think of them as meaning ‘true (at the world)', ‘false (at the world)' and ‘neither 
(attheworld)'.Thatcan only lead to confusion. It's only slightly better to make the model- 
relativity explicit, andspeakof‘trueattheworld, in the model', etc.. Rather, the claim that 
a sentence has value 1/2 at a world of the model says nothing one way or the other about 
whether it is “true in the model at that world”: all we can say is that the claim that it is true 
has value 1/2 at the world in the model. Any attempt to talk in a bivalent way about what's 
true at that world in the model will lead to all sorts of problems.

ψ(M) itself is the product of the 3-valued worlds in FM: that is, in ψ(M) the value of 
a formula A, relative to assignment function s, is the function that assigns to each world 
in FM the value in {0,1/2, 1} that it gets in that world. ψ(M) thus assigns values f in the 
space 3FM (or a sufficiently inclusive subset VM of 3FM). The values are partially ordered 
by the relation f ≺ g, defined as (∀z ϵ F≺)(f (z) ≤ g(z)); there is a maximum value 
1M (the function that assigns 1 to every world in FM ) and a minimum value 0M (defined 
analogously). A formula in the ground language that gets value 1 in M will get value 1M 
in ψ(M); similarly if it gets 0 in M it will get 0M in ψ(M). (When it comes to defining 
validity, I will use for each M an upwards-closed set of designated values that includes 
1M.)18

Each “world” will be obtained from the classical starting model M by adding three 
things:

• a 3-extension T for ‘True', where a 3-extension is a function from M to {0, 1/2, 1}.
• a [⊲-valuation v, where that is a function that takes any assignment-function s and 

any L-formula of form A ⊲ B into a member of {0, 1/2, 1}, subject to the restriction 
that if the free variables of A ⊲ B are all in a set Y, any two assignment functions 
that are alike outside of Y give the same value to A ⊲ B.

• an →-booster (or →-prevaluation) g, defined analogously except with A→ B in 
place of A ⊲ B, and which can assign only values 1 or 1/2 (g thus simply serves to 
codify a binary relation.)

For the moment, these will be arbitrary, though we'll eventually impose strong restrictions 
on which ones we consider. (In Section 6we will choose, for each pair of g and v, a single 
3-extension of‘True' to go with them. In Section 7 we will choose, for each g, a “fiber” 
Rg of those v to consider in connection with g. And in Section 8 we will choose a set J 
of appropriate g. So the worlds we eventually get are determined by pairs < g,v >where 
g ϵJ and v ϵ Rg; for each choice of g and v there will be a uniquely determined T.)

The remaining task of this section is to give the valuation rules for arbitrary “3-valued 
worlds” (before the additional restrictions just mentioned are imposed). Basically these 
will be what's known as the Strong Kleene rules, but there will be one minor surprise in 
the differential treatment of v and g (which will explain why I'm calling one of them a 
‘valuation' and the other a ‘prevaluation' or ‘booster'.)
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Before turning to this, I'll make another notational simplification. I'll need to consider 
valuations of formulas relative to several parameters, and having additional subscripts for 
the assignment function would make for a very cumbersome notation. A common method
for avoiding this, which I'll adopt, is to consider an expanded language L +M (possibly with 
a very large cardinality of symbols) with a name for every object in M , in which case one
can treat quantification substitutionally.19 (I'll usually just write ‘L +', leaving the subscript 
‘M ' implicit.)

This is a familiar device, but in the context of a truth theory, one must be careful to 
remember that the truth predicate we're investigating is the one for the unexpanded L , 
not L +—L + is simply a technical artifice, and one that depends on a specific choice of
M . (Sentences of L + needn't even be in the domain of the model; and even if we think
of the domain as never really including sentences themselves but only Godel codes for 
them, the Godel coding is for L rather than for L +; L + might have too many names to be 
representable by any normal kind of Godel coding.) So we need to carefully distinguish 
when we're talking about terms, formulas and sentences of L+ and when we're talking 
about the more restricted class of terms, formulas and sentences of L. There are some 
obvious rules of thumb,20 but I'll try to be explicit whenever there is any possibility of 
confusion.

Using this artifice, we can describe →-boosters and ⊲-valuations more simply than 
I did above. Instead of an →-booster or ⊲-valuation being a function that assigns values to 
pairs of assignment functions and L-formulas of conditional form, it is a function assigning 
values to L+-sentences of conditional form.

And now I give the valuation rules for arbitrary 3-worlds, based on the classical model 
M+ of the ground fragment of the expanded ground language L+M . (For readability I will 
leave the model M+ out of the notation, and when I do include it I will just call it M.)

• If p is a predicate of the ground language, |p(t1, ..., tn)|g,v,T is the result of
applying ||p|| (the 2-extension assigned to p)to< den(t1), ..., den(tn) >

• |True(t)|g,v,T is T (den(t)) [T is as yet undetermined]
• |A ⊲ B |g,v,T = v(A ⊲B) [v is as yet undetermined; g and T drop out as

irrelevant, as does any structure within A ⊲ B]
• |­ A|g,v,T = 1-|A|g,v,T
• |A^B|g,v,T = min{|A|g,v,T , |B |g,v,T }

19 Of course there's no loss in expressive power: for a formula A (of L or even L+), |A|g,v,s is
definable as | A*|g,v where A* is an L+-sentence that is just like A but with an L+-name for
s(v) substituted for all free occurrences of v , for each v free in A.

20 (i) When I discuss the semantic value of an A relative to some parameters that don't include 
an assignment function, for example, by usinga notation such as |A|g,v,the A involved will be 
assumed to be a sentence, and usually I'll allow it to be a sentence of L+ rather than requiring it 
to be in L.
(ii) As a special case of (i), when I discuss the semantic value of something of form A(t) relative 
to some parameters that don't include an assignment function, for example, by using a notation 
such as | A(t)|g,v , the t involved will be assumed to be a closed singular term, and normally 
allowed to be in L+ rather than requiring it to be in L.
(iii) When I say such things as “If t is a term that denotes B, then |True(t)|g,v is ....”, B will
normally be assumed to be a sentence of L, given that we're going to want ‘True' to trivialize 
(always have value 0) in application to anything that isn't a sentence of L.



1 if (∃τ < σ)(∀u ϵ [τ,σ))(|B\g,v,u = 1)
   0 if (∃τ < σ)(∀u ϵ [τ,σ))(|B |g;v;u = 0)

1/2 otherwise
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1 if g(A→B) = 1
• |A→B|g,v,T =         0 if g(A→B) < 1 and |A|g,v,T = 1 and |B|g,v,T = 0

1/2 otherwise
• |∀xA|g;V;T = min{\A(x/t)|g,v,T : t is a closed L+-term}, where A(x/t) is the

result of substituting t for x .

The definitions of v and ∃ in terms of ­ , ^ and ∀ yield analogs of the ^ and ∀ clauses,
with maximum instead of minimum.

Using these rules, we determine a value |A|g,v,T for every sentence of the language L+ 
on the basis of complexity. (⊲-sentences can be treated as of complexity 0, though they 
needn't be. →-sentences can't be: whether an →-conditional gets value 0 or 1/2 depends on 
prior values for its antecedent and consequent.)

It is evident that for each world z based on M , every L0-sentence gets value 1 in z if 
it is true in M,and0inz if it is false in M. (Similarly for L0+-sentences and M+.) So 
since ψ(M) will be a product of worlds based in M, we have as promised that such ground 
sentences will always have value 1M or 0M , depending on whether they are true in M.

§6. The Kripkean construction in this setting. The task of this section is to generate, 
for each →-booster g and ⊲-valuation v, a privileged 3-valued extension Tg,v for ‘True' 
which is “the appropriate one given g and v”. I'll use Kripke's minimal fixed point con­
struction. (It isn't really essential to stick to the minimal fixed point, but for convenience I 
will.) The only novelty, and it's slight, is that the construction will be given in the context 
provided in the last section, where the values for →-conditionals vary and yet do not reduce 
to ⊃. It is only because of special features of the rules for →-conditionals that this will 
work.

The construction proceeds in stages: for each ordinal σ, we define a 3-valued extension 
Tg,v,σ for ‘True' as follows:

• For all σ, if o isn't (the Godel number of) an L-sentence then Tg,v,σ(o) = 0
• For all σ, if o is (the Godel number of) the L-sentence B then Tg,v,σ (o) is

Here, |B|g;V;v means the value of B relative to g and v and to the choice of Tg;V;u as the 
3-extension of ‘True'. (Note that if o is an L+-sentence that isn't an L-sentence, Tg,v,σ(o) 
is always 0.)

So Tg,v,0 assigns to each (Godel number of an) L-sentence B the value 1/2. For each later 
stage, you look at the values of B at prior stages, as determined by the extended Kleene 
rules of Section 5, and if these values are eventually 1 prior to 0, then Tg,v,σ assigns 1 to B, 
and thus \True(t)|g,v,σ = 1 whenever t denotes (the Godel number of) B. Similarly for 0.

Following Kripke, we show by induction on complexity that

(*): for any L+-sentence A and any g and v, if t < σ and |A|g,v;T is 1 or 0 then 
| A|g,vσ = |A|g,v,T.

Obviously the presence of the ⊲ doesn't interfere with this, since L+-sentences of form 
B⊲C don't change in value as σ increases. What about sentences of form B→ C? 
They clearly never change in value from 1 to anything else as 0 increases. And the value
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of B →C could only change from 0 to anything else if the value of B changed from 1 
to something else or the value of C changed from 0 to something else; that is, a violation 
of (*) when A is of form B →C would require a violation for one of the less complex 
sentences B and C.So the induction on complexity still goes through.

Once (*) is established, the 1 and 0 clauses for ‘True' can be simplified to simple 
existential quantifications: if o is (the Godel number of) the L-sentence B then

1 if (Ǝτ < σ)(|B lgtVtT = 1)
• Τg,v,σ(0) is    0 if (Ǝτ < σ)(|B|g,v,T = 0)

1/2 otherwise

(I didn't write them that way at the start because there would be an apparent danger of 
assigning to Τg,Ό,σ(o) both 1 and 0.) So if t denotes the L-sentence B then

|True(t)|g,v,σ is 1 iff (Ǝτ < σ)(|B|g,v;τ = 1), and 0 iff (Ǝτ < σ)(|B|g,v;τ = 0).

Moreover, cardinality considerations show that there is an ordinal after which further 
increase in σ makes no difference. (That “closure ordinal” may depend on g and v,as well 
as on the underlying model M.) The desired Τg,v(“the minimal fixed point”) is the one for 
such sufficiently large σ. For any L+-sentence B, we take|B|g,v to simply be the value 
generated by this fixed point 3-extension for ‘True'.

The fixed point property gives us that for any g and v ,if t is an L+- term that denotes 
the L-sentence B then

|True(t)|g,v = 1 iff |B|g,v = 1, and |True(t)|g,v = 0 iff |B|g,v = 0.

Since there are only three possible values, it follows that|True(t)|g,v =1/2 iff |B|g,v = 1/2. 
and hence

(K):|True(t)|g,v =|B|g,v .

(The t needn't be in L as opposed to L+, but typically for any sentence in L there will 
be closed terms in L that denote it, and (K) applies to them. Also in connection with the 
quantifier rules, (K) delivers what we desire: if A(x) is a formula satisfied only by the L- 
sentence B, then |Ǝx(A(x)^True(t)|g,v =|B|g,v  in virtue of an L+- term that denotes B.)

Is this enough to ensure naive truth as defined in Section 2? No. Naivety requires that 
if t is an L+-term that denotes L-sentence A, and Y is an L+-sentence that results from 
L+-sentence X byreplacing an occurrence of A with True(t) or vice versa, then |Y|g,v=

|X|g,v. (K) together with the strong Kleene rules ensures this if the substitution of A with 
True(t) is not in the scope of any conditional; but that isn't enough for naivety.

To get the more general intersubstitutivity that naivety requires, we need an assumption 
about g and v. What we need is that they are transparent. For v to be transparent requires 
that

Whenever t is a closed L+- term that denotes an L-sentence B, and Y is a sentence that 
results from the sentence X by replacing an occurrence of B with True(t) or vice versa, 
then v(Y⊲Z)=v(X⊲Z) and v(Z⊲Y)=v(Z⊲X).

For g to be transparent is analogous. Then using (K), an easy induction yields:

LEMMA 6.1 (Transparency). If g and v are transparent then for any L-sentence B and 
any L+-term t that denotes it, if Y results from X by replacing an occurrence of B with
True(t) or vice versa, then |Y|g,v=|X|g,v.
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From this it is clear that all we need to do to ensure that our construction yields naive 
truth is to ensure that the g and v we construct are transparent.

We're going to need one other lemma about the micro-constructions. If v and w are >- 
valuations, let v <K w mean that for any sentences A and B, if v(A ⊲ B) ∊ {0,1} then 
w(A ⊲ B) = v(A ⊲ B). Define <K for e-boosters similarly (though the case where 
g(A e B) is 0 doesn't arise).

Lemma 6.2 (K-Monotonicity). If v and w are ⊲-valuations such that v <K w, then for 
any →-booster g and any L+-sentence A, if |A|g,v e {0, 1} then |A|g,w = |A|g,V.

Proof. By an obvious induction on the stages in a Kripke construction, with a sub­
induction on complexity. More fully, suppose v < K w. It suffices to show that for all σ 
and all A,

(Iσ,A) If | A|g,v,σ ∈{0, 1} then | A|g,w,σ = |A|g,v,σ.
In the induction, we assume that (Iτ,B) holds for every <τ,B> where τ < σ, and also when 
τ=σ and B is a subformula of A (counting each B(t) as a subformula of ∀xBx). [There's 
no need to count B and C as subformulas of B ⊲ C, though no harm in doing so; but 
it's essential to count them as subformulas of B → C.] Given this assumption, we must 
show that (|σ.a). This is straightforward. (In the case where A is of form True(t) where 
t denotes a sentence B that may be of high complexity, we use the inductive assumption 
that for any τ < σ, (Iτ,B) holds for all B. In the other cases we use that (Iσ,b) holds 
for B of lower complexity than A, together with the supposition that v <K w. Details in 
footnote.)21 □

§7. Fibers. The goal of this section is to construct, for each →-booster g based on 
M, a set RM,g of ⊲valuations (think of them as the fairly “regular” ones), and a certain 
privileged member vg of that set. For each fixed g based on M,I'llletFM,g be {< g,v >: 
v e RM,g}, and call it “the fiber attached to g”; < g,vg > will be called the “base point 
of the fiber”.

To complete the geometric analogy, in the next section I will construct a certain “base 
space” JM of “regular” →-boosters g, with a privileged one @. The set FM of “worlds” 
will then be the set of worlds in fibers attached to the base space:thatis, {RM,g|g ∈ JM}. 
So the value space VM for the multi-valued model Ψ(M) will be a set of functions from 
this to {0, 1/2, 1}. Since I'll be holding M constant throughout Part 2, it will be convenient

21 If A is either atomic with predicate in the ground language, or of form True(t ) where t denotes
something other than a sentence, then (Iσ a) is obvious, since |A|g;V;σ is independent of v and σ. 
If t denotes an L-sentence B, then \True(t)|g,v>σ— 1 iff (3τ < σ)(|B\g,V,T — 1). By the 
induction hypothesis, this implies (∃τ < σ)(|B|g,w,T — 1), and hence \True(t)|g;W;σ= 1. 
Analogously when |True(t)|g,v,σ — 0.
If A is a ⊲-conditional, (Iσ a) comes from the assumption that v ≤k w.
|B e C|g,vσ — 1 if and only if g(B e C) — 1 if and only if |B e C|g,w,σ — 1. 
If |B → C|g,v>σ = 0 then g(B → C) < 1 and |B|g,v,σ — 1 and |C|g,V,σ — 0; so by 
induction hypothesis |B|g,W,σ — 1 and |C|g,w, σ = 0, which with g(B e C) < 1 yields 
that | B →C |g,w,σ = 0.
If |­  B|g,v,σ — 1, then |B|g,v,σ — 0; so by induction hypothesis |B|g,W,σ — 0, so |— B|g,w,σ —
1. Similarly if |—B|g,v,σ — 0.
If |∀xBx|g,V,σ — 1 then for all t, |B(t)|g,V,σ — 1; so by induction hypothesis, for all t, 
|B(t)|g;W;σ — 1, so |∀xBx|g,w,σ — 1. If |∀xBx|g,v,σ — 0 then for some t, |B(t)|g,v,σ — 0; 
so by induction hypothesis, for some t, |B(t)|g,w,σ — 0, so |∀xBx|g,w,σ — 0.
Similarly for B ∧ C.



18

to drop the subscript ‘ M ' for now, but it's important to remember that the fiber space, 
and the value space formed from it, depend on M . Everything here is model-relative; the 
construction will give no sense to any model-independent notion of a sentence's value.

The constructions of the fibers and of the base space are fixed point constructions, and 
they are extremely similar. In this section we see how it works for fibers.

Let a >-chain be a set Z of nonempty sets of transparent evaluations such that if 
S1, S2 ∈ Z then either S1 ⊆ S2 or S2 ⊆ S1.

Let g be any transparent e -booster; it will be held fixed throughout the construction of 
the fiber. (There are plenty of transparent →-boosters: a trivial example is one that assigns 
1/2 to every →-conditional, and far more interesting ones will be constructed in Section 8.)

Given any such Z and g, let valg [Z] be the evaluation given by

1 if (3S e Z)(Vw e S)(if |A|g,w = 1then 1B|g,w = 1)

Definition 7.1. valg[Z](A⊲ B) = 0 if (∃S∈Z)(∀w∈S)(|A|g,w = 1 ∧ |B|g,w = 0)

1/2 otherwise

This is a legitimate definition: nothing can be assigned both 1 and 0 since if a chain contains 
both S1 and S2, S1Π S2 can't be empty since it must be either S1 or S2, which were required 
to be nonempty.22 If Z is 0, valg [Z] assigns 1/2 to every ⊲-conditional.

Obviously since g and all members of Z are transparent then valg[Z] is transparent. 
If Z1 and Z2 are chains, let Z1 ≤ Z2 mean: (∀S1 ∈ Z 1)(∃S2 ∈ Z2)(S2 ⊆ S1). (Only 

smallsetsmatter,andthesmallerthesetsinachainthebiggerthechain.ClearlyifZ1 C Z2
then Z1 < Z2. < is a preorder, that is, reflexive and transitive.) So:
Observation on Monotonicity for ⊲-chains If Z1 ≤ Z2 then for any g, valg [Z1] ≤K 

valg[Z2]. (< K was defined near the end of the previous section, just prior to the K- 
Monotonicity Lemma.)
Proof. If valg[Z 1](A ⊲ B) is 1 then for some S1 e Z1, (∀w ∈ S1)(if A|g,w = 1 then

|B|g,w = 1); and so any subset S2 of S1 has this property too; and some such subset is in 
Z2. So the 1 clause for Z1 guarantees the 1 clause for Z2. The 0 clause is analogous. □

Truncation Corollary for echains If S is a member of the echain Z, let ZS (the S- 
truncation of Z) be {S' e Z : S' C S}. Then valg[ZS] = valg[Z].
Proof. By definition, both ZS ≤ Z and Z ≤ ZS. [The first is immediate from the fact 

that ZS ⊆ Z. For the second: Suppose S' e Z. then (since S e Z) either S' ⊆ S or S ⊆ S'; 
in the first case S' is itself in ZS, in the second case it has a subset that is.] But then the 
Observation gives thatvalg[ZS] andvalg[Z] each extendtheotherinthe<K-order, which 
means that they are the same. □

For each g, I inductively define a sequence of sets Rgμ of transparent evaluations, as 
follows. (Think of Rg,μ as the set of valuations that are “regular to level μ, relative to g”.) 
Let

Definition 7.2. Rg,μ = {valg[Z] : Z is a ⊲-chain and (∀ξ < μ)(∃S ∈ Z)(S ⊆ Rgξ)}· 

Note that if κ < μ then Rgμ ⊆  Rg,K; and that all members of any Rgμ are transparent.

22 The definition doesn't really require that Z be a chain, simply that it be a collection of nonempty 
sets of transparent valuations such that any two members of Z have a common subset in Z . This is 
relevant to giving a more natural semantics in the case of vagueness, but for simplicity I'll confine 
myself here to chains.
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Lemma 7.3 (Nontriviality of fiber-stages). For all g and μ, Rgμ ≠0; indeed, for all 
g and μ, Rgμ has a member vgμ such that (∀w ∈ Rgμ)(Vg,μl ≤K w).

Proof. Suppose that for all κ<μ, Rg,K = 0. Then the set Zgμ =df {Rg,K : κ<μ} is a 
>-chain that trivially meets the conditions in the definition of Rg,μ; so letting vgμ =df
v alg [ Zg, μ], vg,μ ∈ Rg,μ·

Moreover, if Z is any >-chain for which (∀ξ < μ)(∃S ∈ Z)(S ⊆ Rg,ξ), Zg,μ≤ Z, so by 
the Observation on Monotonicity for Echains, valg[Zg,μ] ≤K valg[Z], that is, vg,μ ≤K 
valg[Z]. So by definition of Rg,μ vg,μ is its minimum member in the <K ordering. □ 

THEOREM 7.4 (Fixed points in fiber-construction).

(i) For each →-booster g, there is a nonempty set Rg (the set of “g-regular” 
⊲-valuations) such that for all sufficiently large μ, Rgμ= Rg .

(ii) Letting Zg be the set of Rg-chains, that is, nonempty ⊲-chains of subsets of Rg, 
then
(FP) Rg ={valg[Z]:Z e Zg}.

(iii) Rg has a minimal member vg in the ordering ≤K, and it is just valg[{Rg}], that is, 
it is valg[Z] for the chain with Rg as its sole member.

Proof.

(i) By a standard fixed point argument,23 together with the observation that if Rg 

were empty then the Rgμ it is equal to would have to be as well, in violation of the 
lemma.

(ii) Suppose v e Rg and Rg = Rgμ Then v ∈ Rgμ+1, so there is a >-chain Z that 
includes at least one subset S of Rgμ (i.e., of Rg) such that v = valg[Z]; but 
then the truncation ZS consists entirely of members of Rg, and by the Truncation 
Corollary, v = valg[ZS]. (Conversely, if v = valg[Z] and Z is a chain of subsets 
of Rg, v clearly satisfies the requirement for being in each Rgμ and hence in Rg.)

(iii) {Rg} < Z for all Z e Zg, so the minimality of vg follows from the observation on
monotonicity. □

For each v e Rg, v is valg[Z] for at least one Z e Zg; pick one and call it Zg,v. 
Then given (ii) of the Fixed Point Corollary, we have in effect a modal-like neighborhood 
semantics in each fiber, with the valuations in Rg as “worlds”: for each world w, the 
“w-neighborhoods”arethemembersofZg,w (or the supersets of such members, depending 
on how you use the term ‘neighborhood'). For vg the sole neighborhood is Rg; but typical 
“worlds” within this neighborhood have much smaller neighborhoods, to which those 
worlds needn't belong. (In the construction as I've done it, the neighborhoods of each 
world are nested, but as remarked in note 22, this is not essential to the construction.)

23 Details: Let Rg be the intersection of all the Rg,K. Trivially, for every κ, Rg C Rg,K; we need
that for all sufficiently large κ the reverse inclusion holds. If c is the cardinality of the ground
model M (and hence of L+) then (since 3c = 2c) there are only 2c ⊲ -valuations; so there must 
be an ordinal μ with at most 2c predecessors such that for every Evaluation v, if v ∉ Rg, then 
(3κ < μ)(υ ∉ Rg,K). Since the sequence of Rg,K is a chain, it follows that for every v, if ∉ Rg, 
then v∉Rgμ, and indeed that for every κ ≥ μ, v / Rg,K.
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It's worth making explicit the values that result. In general,

1A⊲ B|g,v —

1 if (∃S ∈ Zg,v)(∀w∈S)(if |A|g,w — 1 then |B|g,w — 1)
0 if (35 e Zg,v~)(∀w ∈ S)(|A|g,w — 1 Λ |B|g,w — 0)
1/2 otherwise

Defining ► from ⊲ as in Section 3, |A ► B|g,v has the same 0 clause, but is 1 iff (35 e 
Zg,v)(Vw e 5)(|A|g,w ≤ |B|g,w).

In particular, since Zg,vg is {Rg},

(*) | A ⊲ B|g,Vg =

1 if (∀w ∈ Rg)(if |A|g,w — 1 then |B|g,w — 1) 
0 if (∀w e Rg)(|A|g,w — 1 Λ|β|g,w — 0)
1/2 otherwise;

and

(**) |A ► B |g,vg =

1if(Vw e Rg)(|A|g,w<|B|g,w)
0 if (∀w ∈ Rg )(| A|g,w — 1 Λ|Β |g,w — 0) 
1/2 otherwise

Also, since the w in Rg are precisely the valuations of form valg[Z] where Z is a chain of 
members of Rg, we also have

| A ⊲B |g,vg =

1 if (∀w∈Rg)(|A ⊲ B|g,w=1)
0 if (∀w∈Rg)(|A ⊲ B|g,w = 0)
1/2 otherwise

and similarly for ► .
The following result will prove central:

THEOREM 7.5 (Regularity for fibers). For any L+ sentence A and any g, | A|g,vg — 1 iff 
(∀w ∈ Rg)(|A|g,w — 1),and |A|g,vg — 0 iff (∀w e Rg)(|A|g,w — 0).

Proof. The right to left of each ‘iff' is trivial, and the left to right holds by virtue of 
the minimality of vg ((iii) of the Fixed Point Theorem) together with the K-Monotonicity 
Lemma (Lemma 6.2). □

This means that a great deal about the fiber at g is determined from its base point
< g ,vg >.

From now on I'll use |A|g as an abbreviation for |A|g,vg.

COROLLARY 7.6 (to Regularity Theorem).

(a) If |A|g — 1 then |A ⊲ B|g — |A ► B|g — |B|g
(b) If |A|g — 0 or |B|g — 1 then |A ⊲ B|g — |A ► B|g — 1.
(c) If |B|g — 0 then |A ► B|g — |-A|g, and |A ⊲ B|g > |-A|g. (The inequality will

be strict when | A|g is 1/2 and for all v in Rg | A | g,v < 1.)

Proof. (a) If |A|g — 1 then by the Regularity Theorem, (∀w∈Rg)(|A|g,w = 1); so from 
(*) and (**) above, |A ⊲ B|g and |A ► B|g are each 1 iff (∀w ∈ Rg)(|B|g,w = 1), and 
0 iff (∀w ∈ Rg)(|B|g,w = 0). But by Regularity again, that means |A ⊲ B|g — 1 iff 
|B|g =1, and similarly for 0; which implies that the same holds for 1/2. Similarly for ►.
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(b) Immediate from the Regularity Theorem and the 1 clause of (*) and (**).
(c) The part involving ► follows from (a), and the part involving ⊲ follows from 

that. □

By (a), “modus ponens for ⊲ holds at all base points g”: If | A|g = |A ⊲ B |g = 1 then 
|B|g = 1. Similarly for ►.

Also we have

Theorem 7.7 (Classical collapse for ⊲ and ►, preliminary statement). If |A v ­ A|g = 1 
and | B v -B|g = 1 then for all v in Rg, | A ⊲ B |g,v = |A ► =|A ⊃ B| g,v

Proof. If |A|g = 0, then for all v in Rg, |A|g,v = 0, so for all v in Rg, |A ⊲ B|g,v = 
|A ► B|g,v = |A ⊃ B|g,v = 1. Similarly if |B|g = 1. And if |A|g = 1 and |B|g = 0, 
then for all v in Rg, |A|g,v = 1 and |B|g,v = 0, so |A ⊲ B|g,v = |A ► B|g,v =
|A ⊃ B |g,v = 0. □

§8. The base space. The construction of the base space has some analogy to the 
construction of the fibers. But instead of relativizing the construction to a given evaluation 
v (which would be the analog of what we did with the fibers), we make use of the prior 
construction of a privileged v for each g, viz. the base point vg. We also make modifications 
reflecting the fact that our e -boosters are only two-valued.

Let an →-chain be a set P of nonempty sets of transparent →-boosters such that 
if G1, G2 e P then either G1 ⊆ G2 or G2 ⊆G1.

Again, let |A |g abbreviate|A|g,vg. Letboost[P]bethee-booster given by

DEFINITION 8. 1 . boost[P](A e B)= 1 if (3G∈ P)(∀g ∈ G)(if |A|g = 1then |B|g = 1)
1/2 otherwise

Obviously since all members of P and all valuations of form vg are transparent then 
boost[P] is transparent.

In analogy to the fiber-construction: If P1 and P2 are →-chains, let P1 < P2 mean: 
(∀G i ∈ P1 )(∃G2 ∈ P2)(G2 ⊆ G1). (Again, only small sets matter, and the smaller the 
sets in a chain the bigger the chain. If P1 C P2 then P1 < P2.) So:

Observation on Monotonicity for e-chains If P1 < P2 then boost[P1] <K boost[P2].
[This now means only that the relation assigned by P1 is a subset of that assigned by P2.]

Proof. If boost[P1](A e B) is 1 then for some G1 e P1, (∀g e G1)(if | A|g = 1 then 
| B|g = 1); and so any subset G2 of G1 has this property too; and some such subset is 
in P2. □

Truncation Corollary for e-chains If G is a member of the e-chain P, let PG
(“the G-truncation of P”) be {G' e P : G' ⊆ G}. Then boost[PG] = boost[P].

Proof. Analogous to the proof for fibers. □

I inductively define a sequence of sets Jα of transparent →-boosters, as follows. (Think of 
Jα as the set of boosters that are “regular to level α”.) Let

Definition 8.2. Jα = {boost[P] : P is a e-chain and (∀γ < α)(3G ∈ P)(G ⊆ JY)}. 

Clearly if β<α then Jα⊆ Jβ; and all members of any Jα are transparent.
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Lemma 8.3 (Nontriviality of base stages). For all a, Ja = 0; indeed, for all a, Ja has 
a member ga such that (Vh e Ja)(ga <K h).

Proof. Suppose that for all β<α, Je =0. Then the set Pa =df {Je : e<a}isan — -chain 
that trivially meets the conditions in the definition of Ja; so letting ga =df boost[Pa], we 
have ga e Ja. Moreover, if P is any —-chain for which (Vy < a)(3G e P)(G c Jy), then 
Pa < P, so by the Observation on Monotonicity for —— -chains, boost[Pa] <k boost[P], 
that is, ga <K boost[P]. So since Ja is the set of members of form boost[P] where (Vy < 
a)(3G e P)(G c Jy), ga is its minimum member in the <K ordering. □

THEOREM 8.4 (Fixed point of base construction).
(i) There is a nonempty set J (the set of “regular” — - boosters) such that for all 

sufficiently large a, Ja = J.
(ii) Letting P be the set of J-chains, that is, nonempty — -chains of subsets of J, then

(FP) J ={boost[P]:P e P}.
(iii) J has a minimal member @ in the ordering < K, and it is just boost[{J}], that is, it 

is boost[ P] for the chain with J as its sole member.

Proof.
(i) As for the fiber construction.

(ii) As for the fiber construction, but to repeat: Suppose h e J and J = Ja. Then 
h eJa+1, so there is an —-chain P that includes at least one subset G of Ja 
(i.e., ofJ ) such that h = boost[P]; but then the truncation PG consists entirely of 
members ofJ and by the Truncation Corollary, h = boost[PG]. (Conversely, ifh = 
boost[P] and P is a chain of subsets of J , h clearly satisfies the requirement for 
being in each Ja and hence in J.)

(iii) {J} < P for all P e P, so the minimality of @ follows from the observation on
monotonicity. □

Foreach g e J, g is boost[P] forsome P e P; pickoneandcall it Pg. As with thefibers, 
(ii) of the Fixed Point Corollary means that we have in effect a modal-like neighborhood 
semantics on the base space, with the boosters in J as “worlds”: for each world g the 
g-neighborhoods are the members of Pg (or their supersets). For @ the sole neighborhood 
is J; but typical “worlds” within this neighborhood have much smaller neighborhoods, 
to which those worlds needn't belong.

The values that result will of course not be completely analogous to those in the fiber 
case. In general,

g(A,B)=
1 if (3G e Pg)(Vh e G)(if |A\h = 1 then |B\h = 1)
2 otherwise

(I'm using g(A, B) as an alternative notation for g(A — B), to lessen the possibility of 
confusion with the value of A — B at g.) And so

|A — B|g,v =

1 if (3G e Pg)(Vh e G)(if |A|h = 1 then |B|ft = 1)

0 if (VG e Pg)(3h e G)(|A|h = 1 A \B|ft = 0) and |A|g,v = 1 and |B\g>0 = 0

2 otherwise

(Note that in the last two conjuncts of the 0 clause we have v, not vg.)
Call g reflexive if g is in every member of Pg. In the case where g is reflexive and in

addition v = vg, the 0 clause simplifies to | A|g,v = 1 A|B|g,v = 0. In particular, since not
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only is @ reflexive but P@ is {J},

|A →B|@ =
1 if (∀h e J)(if |∀|h = 1 then |B|h = 1) 
0if|A|@ = 1 and |B|@ = 0

1/2 otherwise

Observation on Modus Ponens:

(1) : If (∀h ∈ J)(|A|h = 1) then |A→ B|@ is 1 iff (∀h ∈ J)(|B |h = 1).
(2) : If |A|@ = 1 and |A→ B|@ is 1 then |B|@ = 1.

(2) says that “modus ponens for holds at the principal base node < @,v@ >”.
A very important difference between this base construction and the fiber construction 

is that we do not have a “Regularity Theorem” for the Base Space. (For two reasons. 
First, when g <K h, there's no guarantee that even for the same v, |A|g,v ≤K |A|h,v: 
if g(B→C)< 1 and h(B→C)= 1, and |B|g,v= |B|h,v= 1 and |C|g,v = |C|h,v = 0,
then |B→ C|g,v will be 0 and |B→C |h,v will be 1. Second, we'd need in any case that
|A|g,vg <K |A|h,vh, and there's no way to get from g <K h to vg <K vh.)

Not only does the proof fail, it is easy to construct counterexamples, based either on 
embeddings of inside ⊲ or on embeddings of truth claims that “depend on” inside 
⊲ To begin with (this isn't the counterexample), let K be a standard Curry sentence for 
→ constructed by the usual methods to be equivalent to True((K))→ ⊥ where ⊥ is
—T (i.e., —∀x(x = x)). By transparency, K must be equivalent to K g(K →⊥) is
1 at those g for which there's a G in Pg throughout which K has value less than 1, and 1/2 
otherwise; |K →⊥|g, which is |K|g, must be the same since the assumption that it was
0 would lead to contradiction. Since @ e P@, |K |g must have value 1/2 when g is @, and 
must have value 1 for some other g e J.

Now let K* be the sentence K ⊲ ­  K. At those g for which |K|g = 1, |K*|g,v is 0 
for any v in Rg; and at those g for which |K|g < 1, |K*|g,v is 1 for any v in Rg. This 
is obviously a counterexample to “Base-Regularity”: K* has value 1 at the principal node 
< @,v@ >, but has value 0 at many other base nodes.

Indeed it is an especially interesting example, in that it's a sentence for which excluded 
middle holds at every node (so T (K* v —K*) holds at every node), and yet unlike the 
sentences in the ground model it varies in value from node to node, even base node to base 
node (so neither T K* nor T ­ K* holds at the principal base node). I take it that 
we should not count such sentences as “behaving classically”, so the example illustrates 
that in this theory obeying excluded middle does not suffice for behaving classically. What 
does suffice is obeying the law (T A) v (T — A), which we might call strongexcluded middle;24 more on this in the next section.

24 So one way to define the classicality predicate mentioned near the end of Section 4 is as

‘True(F(x)) v ­ True(F(x))', where ‘F(x)' denotes the result of prefixing x with ‘T →’.
So defined, the classicality predicate is highly nonbivalent: while it's value is 1 when applied to
formulas for which the claim of strong excluded middle has value 1, it's value is 1/2 rather than 0 
for every other formula. One can get predicates that are closer to bivalent by employing iterations 
of a determinately operator, which can be defined using ‘→' in the manner given in Field (2008). 
(Transfinite iterations are also definable, using ‘True' in the limit stages.) The more times one 
iterates ‘determinately' in the definition, the closer to bivalence one gets. But one can never get a 
fully bivalent classicality predicate in this manner; which is good, since otherwise a sentence that 
asserts of itself that it is not both classical and true would be paradoxical even within the logic.
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Part 3. VALIDITY AND LAWS

§9. Validity concepts, conditional introduction theorems, structural rules, reason­
ing by cases, and classical collapse. Let L be a language (with the formation rules we've 
been considering) with an expressively adequate ground fragment L 0; and let M be a 
minimally adequate classical model for its ground fragment. In Part 2 I have constructed a
multi-valued model Ψ(M) based on M, whose values are functions assigning a member of 
{0,1/2,1} to each node in FM (i.e., in {< g,v >: g e J and v e RM,g}). For any assignment 
function s for M, let's say that a formula A of the full language L is <M, s>-designated 
if in M relative to s, its value at the principal base node is 1. Equivalently, if its value is 1 
throughout the principal fiber {< @,v>: v e RM,@}.

Call a formula <M, s>-super-designated if its value (relative to M and s)is1atall 
nodes (equivalently, all base nodes). While for a wide class of sentences designatedness 
requires super-designatedness, the example of K * from the last section shows that this is 
not invariably so.

For sentences we can simply speak of M-designatedness and M-superdesignatedness, 
since the assignment function doesn't matter.

It might seem natural to base a model-theoretic explication of validity on the notion of 
super-designatedness: e.g. to regard a sentence as valid if and only if for every model M it 
comes out super-designated, and to regard an inference between sentences as valid if and 
only if for every model where the premises are super-designated, so is the conclusion. But I 
think this would have a high cost: reasoning by cases would not come out as an acceptable 
meta-rule. Indeed we'd have cases where a disjunction was counted “valid” even though 
each disjunct implied absurdities. We can see this from the example of K* at the end of 
the previous section. K* v —K* is super-designated in each model. But in no model is 
either K* or its negation super-designated; so the inference from K* to any absurdity one 
chooses would come out vacuously valid, and similarly for the inference from —K* to 
the same absurdity. I think we should be deeply dissatisfied with any account on which a 
disjunction of two claims comes out logically true and yet each of the disjuncts logically 
implies that I'm a cheese sandwich.

Designatedness does not have the problem: there are models in which K* is designated 
(indeed, every model has this feature), so on the definition of validity (and implication) 
I'mabouttogive, K* does not imply that I'm a cheese sandwich (indeed it doesn't imply 
anything that isn't itself designated).

Definition 9.1. If Γ is a set of formulas of L, and B a formula of L, call the inference 
from Γ to B model-theoretically valid, and write Γ ⊨ B, if for every minimally adequate 
classical model M of the ground fragment L0 of L, and every assignment function s for 
M, if all members of Γ are <M, s>-designated then B is <M, s>-designated. (I'll take 
“Γ model-theoretically implies B ” to be another way of saying that the inference from Γ 
to B is model-theoretically valid.)

For present purposes i propose to take model-theoretic validity, so defined, as an expli­
cation of validity (for quantificational languages with ‘True' and the two conditionals).25 
My primary interest will be in proving that all inferences of certain forms are (model- 
theoretically) valid: those forms are valid schemas, or laws.

This is not quite my ultimately preferred view. on philosophical grounds I prefer to think of 
validity as a computationally tractable relation, in the sense that for any recursively enumerable

25
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It will be convenient to introduce a notion I'll call M-validity (Γ \=M B):

Γ \=M B if and only if for every assignment function s for M, if all members of Γ are 
<M, s>-designated then B is <M , s>-designated.

This really isn't validity in any interesting sense: any decent model-theoretic account of 
validity quantifies over a wide range of models, it isn't restricted to a single model. But in 
proving validity it suffices to prove M-validity in a way that manifestly doesn't depend on 
the underlying ground model M, and that's what I'll do. In working with a specific model 
M, we can introduce the extension L+M discussed before, and then confine our attention 
to inferences among L+M -sentences: now taking Γ to be a set of L+M-sentences and B an 
L+M-sentence, there is no loss of information in simply saying

Γ ⊨m B if and only if, if all members of Γ are M-designated then B is M-designated.

That is, letting |Γ |M,g,v abbreviate min{| A|M,g,v : A ∈ Γ}, and |Γ |M,g abbreviate |Γ |M;g;Vg: 

(*): Γ ⊨M B if and only if (if |Γ|M,@ = 1 then |B |M,@ = 1);

or equivalently,

Γ ⊨M B if and only if (∀u ∈ R@)(if |Γ|M, @,v = 1 then |B |M,@,v = 1).

This is the notion whose properties I will primarily be investigating. Usually I'll drop the 
subscript ‘M'. This is potentially dangerous, since it might lead us to forget that we're 
working with a model-dependent notion rather than full model-theoretic validity; but I 
think I've stressed the distinction enough to make the risk minimal.

set Γ of formulas, the set of formulas B that validly follow from it should also be recursively
enumerable. Model-theoretical validity as defined above won't satisfy that: indeed, any hope
for that was given up from the start, when I restricted to minimally adequate classical models 
(which, you'll recall, were required to be ω-models).
But even if, like me, you prefer a computationally tractable validity relation, the notion of 
model-theoretic validity as defined above is highly relevant for the purposes of this paper. For 
the question of this paper is:

(Q) : Can we have a logic with naive truth and reasonable laws, including reasonable laws of
restricted quantification?

The logic needs to be strong enough so as to include the laws we want (e.g., of naive truth and 
restricted quantification). It also needs to not be so strong as to declare valid any inferences we 
strongly want not to be valid. For instance, we certainly don't want the inference from my living 
in New York to the defeat of the Paris Commune to turn out valid; the conservativeness criterion 
of Section 4 was imposed precisely so as to guarantee against such an extreme sort of excess 
strength.
My view is that model-theoretic validity, in the sense defined above, is highly relevant to (Q). 
What I ultimately want is an axiomatic system, consisting of axioms positing some basic validities 
together with rules of validity-preservation. As long as

(R) : The axioms declare valid only inferences that are model-theoretically valid, and the rules
are ones that preserve model-theoretic validity,

then any theorem of such a system will declare valid only inferences that are model-theoretically 
valid, and so the conservativeness criterion will be met.
In short, we are free to choose whatever basic validities and rules of validity-preservation we 
like, provided that condition (R) is met. What is relevant to this paper is only that the inferences 
we care about are available to be chosen, that is, are model-theoretically valid. How precisely to 
decide on which of the other model-theoretic validities should count as genuine logical validities 
(rather than, for example, as mathematical truths) needn't here concern us.
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It is easily seen that both modus ponens for ⊲ and modus ponens for→ are valid 
(M -valid for each M ), in the sense of (M -)validity I've defined. I remarked before that 
in any naive truth theory meeting extremely minimal conditions, we can't have condi­
tionals that obey both modus ponens and unrestricted conditional proof. Indeed, Curry's 
paradox shows that modus ponens requires failure of conditional proof even in the special 
case when there are no side premises (or none beyond the arithmetic used to construct 
self-referential sentences). But there are nonetheless limited versions of conditional proof 
that hold.

In the case of -Introduction, I introduce the notion of universal validity (and universal 
M-validity). If Γ is a set of L+M-sentences and B an L+M-sentence, define the universal 
M-validity of the inference from Γ to B by

(**): (Γ ⊨M,univ B iff (∀g ∈ Jm)(if |Γ |M,g = 1 then |B M,g = 1)

(where |Γ|M,g = 1 means that for all A e Γ, | A|M,g = 1). And if Γ is a set of L-formulas 
and B an L-formula, call the inference from Γ to B universally valid (Γ ⊨ univ B) if 
for every (acceptable) model M and every scheme s for substituting L+M -names for free 
variables in Γ and B, Γ =M Bs.

Even for 0-premise inferences (i.e., formulas), universal validity is stronger than validity, 
because of the lack of a regularity theorem on the base space. (In the special case of - 
conditionals, validity implies universal validity.) For B to be universally valid (in a given 
M) is for T B to be valid (in that M). While we don't have B = T B (consider 
K * from the previous section), we do have that if B is universally valid so is T B 
(and hence that T B = T (T B)).

The following meta-theorem (which holds relative to any M, as well as generally) is 
trivial, but worth stating since it will be the standard way of proving the validity of - 
conditionals.

Proposition 9.2 (Limited →-Introduction).

(1) If B = univC then = univB →C (and hence = B →C)
(2) More generally, let T →Γ abbreviate {T A : A ∈ Γ}. Then for finite Γ, if

Γ, B ⊨ univC then T Γ ⊨ univB→C (and hence T →Γ = B C).

Proof. (1) is a special case of (2), so let's just prove the latter. Consider any g e J 
for which |T F|g = 1. Then for every Ai in Γ there is a Gi in Pg such that (∀h ∈ 
Gi)(|Ai|h = 1); the Gi form a finite subchain of Pg, so there is a smallest one, call it G. 
It's in Pg, and (∀h ∈ G)(|Γ|h = 1). But if |B →C |g < 1, then since G e Pg, there must 
be an h e G such that |B |h = 1 and |C |h < 1. Since also |Γ |h = 1, it can't be the case that 
Γ, B ⊨ univ C. □

The ‘if... then' in the nonparenthetical parts of(1) and (2) can in fact be replaced by ‘if 
and only if'.26

one can not generalize (1) to include side formulas, that is, we do not have that if 
Γ, B = univ C then Γ ⊨ B →C.

Example: For any A and C, A, ­  A =univ C (since there are no g where | A|g and
|­ A|g are both 1); so the purported generalization would require that for all A and C,

26 Suppose that not (Γ, B ⊨ univ C); then for some h ∈ J , | Γ |h = |B|ft = 1 and |C |h < 1. {{h}} is 
an -chain; let g be the →-booster it generates. Then |T →Γ|g = 1 and |B→ C|g < 1.
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A ⊨ - A →C. But let A be the sentence K * from the end of Section 8, and C be ⊥
|K*|@ = 1, but there are g ∈J for which |­ K*|g = 1, so |­ K* ⊥|@ isn't 1 (indeed,
is 1/2). □

Might what I'm calling universal validity better be called validity (and what I'm 
calling validity be called sub-validity)? The Limited -Introduction Theorem shows that 
this would have the advantage of yielding conditional proof in the case where there are no 
side formulas. Inevitably, this would mean that restrictions would be required on modus 
ponens. I'll give two examples.

Example I: Let A be K, the Curry sentence for →, discussed in the previous section 
(and used in the definition of K*), and B be ⊥ As observed earlier, there are base nodes 
g at which K has value 1; and since it's equivalent to K ⊥ both K and K ⊥
have value 1 at such g, even though ⊥ obviously doesn't.

Example II: Let A be K* and B be ⊥ Let h be any world where K is 1; then |K* |h = 0. 
Let g be boost({{h}}). By the valuation rules, |K ⊥|g is 0 and |K* ⊥|g = 1.But
the first means that |K|g is 0 and hence |K*|g is also 1.

In both these examples, there are nodes where A and A B have value 1 and B not only 
has value less than 1, it has value 0. That means that these examples show not only that 
modus ponens for is not universally valid, but also that the rule

Contra-MP: A, ­  B ⊨ ­ (A→B)

is not universally valid. (Both this rule and modus  do preserve universal validity, 
but that is much weaker.27)

Is the fact that these rules are not universally valid a decisive reason for using the term 
‘valid' as I have, rather than for universal validity? Perhaps not: it might be thought 
worthwhile to restrict modus ponens and Contra-MP a bit to get more conditional proof. 
That would still be congenial to the aims of this paper. For since the target laws from 
Sections 1 and 3 are all →-conditionals, their validity implies their universally validity; 
using universal validity as the explication of ‘valid' would still lead to a vindication of the 
restricted quantifier laws, though in a slightly different overall logic. (Similarly, if anyone 
is unconvinced that reasoning by cases should be a desideratum and thinks that validity 
should involve the preservation of super-designatedness, it shouldn't matter: since the 
target laws from Sections 1 and 3 are all 0-premise inferences, their universal validity 
means that they preserve super-designatedness. All three notions of validity coincide in 
the case of the validity of →-conditionals.)

Another technically useful notion is super-validity:

(***): Г ⊨M super b if and only if for every <g,v> in FM, if |Г|M,g,v = 1 then 
| B | M , g ,v = 1.

27 We don't even have the meta-rule that if Γ ⊨ univ B and Γ ⊨ univ B→ C then Γ ⊨ univ C, 
when Γ ≠ 0. Taking Γ to be {B}, that would yield the meta-rule that if B = univ B→ C
then B = univ C; taking B to be K and C to be ⊥ we see that this fails. (We do have that if 
= univ B →C then B = univ C: that's the converse of (1), proved in the previous footnote.) 
Similarly, we don't even have the meta-rule that if Γ ⊨ univ B and Γ ⊨ univ ­ C then 
Γ ⊨ univ ­ (B→C), when Γ ≠ 0. Taking Γ to be {B}, that would yield the meta-rule that if
B ⊨ univ ­  C then B ⊨ univ —(B→ C); taking B and C both to be the Liar sentence, we see that 
this fails.
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(Super-validity obviously entails universal validity, and for single sentences, super-validity
and universal validity coincide; so valid -conditionals are super-valid.) The appropriate 
introduction theorem here involves the connectives A ⇒nc B, defined as T (A ⊲ B),
and A B, defined as T (A ► B). In fact we get biconditionals:

Proposition 9.3 (Limited ⇒nc -Introduction and ⇒-Introduction (with converses)). 
B ⊨m,super C if and only if ⊨m B ⇒nc C if and only if ⊨M,univ B ⇒nc C.

(B ⊨m,super C and­ C ⊨M,super ­  B) if and only if ⊨m B ⇨C if and only if ⊨M,univ 
B C

Proof. The proof of the first biconditional in each line is routine. The second bicon­
ditional in each line holds because as noted earlier, T B ⊨ T (T B);
so in particular (recalling the definition of ⇒nc), B ⇒nc C = T (B ⇒nc C), 
and so ⊨ M B ⇒nc C implies ⊨M T →(B ⇒nc C), which is equivalent to =M,univ 
B⇒nc C. □

Incidentally, not only does B ⇒nc C imply B ⊲ C (as is immediate from its definition, 
given modus ponens for →), it implies B C as well (indeed universally): for when 
|B →C|g < 1, then (∀G ∈ Pg)(∃h ∈ G)(|B|h = 1 Λ |C|h < 1), so (∀G ∈ Pg)(∃h ∈ 
G )(|T|h = 1 Λ|Β ⊲ C |h < 1), so | B C |g < 1.

We also have a notion of principal-fiber-validity:

(****): Γ ⊨m,pf b if and only if (∀v e Rm,@)(if |Γ|μ,@,v = 1 then |B |m,@,v = 1).

In disanalogy to the case of universal validity, this coincides with ordinary validity when 
Γ = 0, by the Regularity Theorem for fibers. For this notion, we have the following (which 
also holds relative to any M, as well as generally):

Proposition 9.4 (Limited ⊲-Introduction and ►-Introduction). If Γ, B ⊨ pf C then 
Γ = B ⊲ C.

So if Γ, B = pf C and Γ, ­ C = pf ­  B then Γ = B ► C.

Proof. (Obviously the second follows from the first.) Suppose that |B ⊲ C |@ < 1.Then 
there is a v1 ∈ R@ for which |B|@,v1 = 1 and |C|@,v1 < 1. Suppose also that |Γ|@ = 1. 
Then by the Regularity Theorem on fibers, |Γ |@,v1 = 1. So the inference from Γ and B to 
C isn't pf-valid. □

In another disanalogyto the case of universal validity, one cannot strengthen the conclu- 
sions to ⊨ pf claims (except when Γ = 0; but since pf-validity coincides with validity in 
that case, this is of no interest).

Example: Since obviously A, T ⊨ pf A, the proposed strengthening would require A = pf
T ⊲ A. But while the weaker A = T ⊲ A is guaranteed by the above, A ⊨ pf T ⊲ A 
has many counterexamples. For instance, take A to be the “>-Curry” K# , constructed 
so as to be equivalent to True((K#)) ⊲ ⊥ and therefore to K# ⊲ ⊥. For any fiber g 
including @, |K#|g,Vg must be 1/2. [Reason: since vg ∈ Zg,Vg, |K# ⊲ ⊥|g,vg can be 1 
only if |K#|g,vg < 1, and |K# ⊲ ⊥|g;vg can be 0 only if |K#|g,vg = 1; the only value 
compatible with |K# ⊲ ⊥|g,Vg = |K#|g,vg is |.] Since it isn't 1 and is equivalent to 
|K# ⊲ ⊥|g,Vg, there must be a v in Rg where |K#|g,v = 1. This requires that for some S 
in Zg,v, (∀w ∈ S)(|K#|g,w < 1); and that requires that |T ⊲ K#|g,v < 1. So at such a 
v, |K#|g,v = 1 and |T K#|g,v < 1. □
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I turn now to structural rules, reasoning by cases, and the collapse of both conditionals to
D in classical contexts.

Structural Rules: It is immediate from the definitions that the usual structural rules hold
for validity and all its strengthenings (universal validity, pf-validity and super-validity). 

That is, for each notion we have both

(1) Weakening: if Γι ⊨B and Γι C Γ2 then Γ2 ⊨ B; and
(2) Cut: if Γ, A = B and Γ, B = C then Γ, A = C.

And since I've defined Γ = B for the case where Γ is a set (rather than a sequence) of 
premises, structural permutation and structural contraction are automatic. I will implicitly 
appeal to all these structural rules in what follows, without special note.

Reasoning by cases: For each of these validity notions, we have reasoning by cases even 
with side formulas, both in the v-form and the 3-form.

That is,

(1) If Γ, A⊨C and Γ, B = C then Γ, A v B ⊨ C, and
(2) if Γ, A(x) = C when x isn't free in C or any member of Γ, then Γ, ∃xA(x) ⊨ C.

For instance, the only way we could have a failure of Γ, A v B =univ C is for there to be 
a model M and a g in JM such that |Γ|Μg = |A v B|M,g = 1 but |C|M,g < 1; but then 
either (|Γ|μ,g = |A|M,g = 1 and |C|M,g < 1) or (|Γ|Μg = |B|m,g = 1 and |C|M,g < 1), 
so at least one of Γ, A = C and Γ, B = C must fail.

Finally we can state a classical collapse result for all our conditionals:

Classical collapse: All conditionals are equivalent to d in classical contexts, that is, on the 
assumption of strong excluded middle for their antecedents and consequents.

That is,

(1) (T→A) v (T→­ A),(T→B) v (T­ B) ⊨univ(A ⊲ B) (A D B), and
similarly for ►; and

(2) (T A) v (T —A), (T B) v (T —B) = (A B) (A D B).

Proof.

(1) If |(T→A) v(T→­  A)|g = 1 then either (3G e Pg)(Vh e G)(|Ah = 1) or
(∃G ∈ Pg)(∀h ∈ G)(|A|h = 0). But then by Regularity for fibers, either (3G e 
Pg)(∀h ∈ G)(∀w ∈ Rh)(|A|h,w = 1) or (3G e Pg)(Vh e G)(Vw e Rh)(|A|h,w = 
0). Similarly for B. It clearly follows that (3G e Pg)(Vh e G)(Vw e Rh)(|A ⊲ 
B|h,w = |A ⊃ B|h,w), hence (∃G ∈ Pg)(∀h ∈ G)(|(A ⊲ B)◀▶ (A ⊃ B)|h).
Hence |(A ⊲ B)⇔(A ⊃ B)|g = 1.

(2) If |(T→ A) v (T→­ A)|@ = 1 then either (∀h ∈ J)(|A|h = 1) or (∀h e
J)(|A|h = 0). But then by Regularity for fibers, either (∀h e J)(Vw ∈ Rh)(|A|h,w = 
1) or (Vh ∈ J)(Vw e Rh)(| A|h,w = 0). Similarly for B. It clearly follows that 
(∀h ∈J)(∀w ∈Rh)(|A→ B|h,w = |A ⊃ B|h.w), hence (∀ e J)(|(A B)
(A ⊃ B)|h). Hence |(A→B)⇔(A ⊃ B)|@ = 1. □

Note that since (1) is universal, it generates the valid→-conditional [(T A) v
(T→­ A)] Λ[(T→B) v (T→­ B))]→[(A⊲B)∧(A⊃B)].
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Especially in the case of (1), there are related results that derive weaker equivalences
from weaker premises (also in universal fashion, so that we get valid →-conditionals from 
them). For instance

(la) ⊤ →> [A V­ A v B v ­ B] ⊨univ (A ► B) ↔↔ (A ⊃ B)
(lb) ⊤ → [A v­ Av B] ⊨univ (A ⊲ B) ↔↔ (A ⊃ B)
(lc) (A V­ A) Λ (B V ­ B) ⊨univ (A ► B) ◄ ► (A ⊲ B) (A 3 B).
Proof. (1a) If the premise has value 1 at g then for some G in Pg and all h in G, either 

(i) |A|h = 0 or |B|h = 1, or (ii) |A|h = 1 and |B|h < 1, or (iii) |B|h = 0 and |A|h = 1/2. 
In case (i), regularity gives that either | A| h,w is 0 for all w in Rh or | B| h is 1 for all w in 
Rh, in which case clearly | A ► B |h and | A ⊃ B |h are both 1. In case (ii), regularity gives 
that |A|h,w is 1 for all w in Rh, and that if|B|h is 0 then |B|h,w is 0 for all w in Rh; clearly 
then if |B|h is 0 then |A ► B|h and |A ⊃ B|h are both 0, and if 1/2 they are both 1/2. In case 
(iii), |A ► B|h and |A ⊃ B|h are both 1.So in all three cases, |A ► B|h = |A ⊃ B|h for 
all h in G; this establishes that the right hand side of (1a) has value 1 at g.

(lb) Analogous except without case (iii).
(lc) If the premise has value 1 at g then either (i) | A|g = 0 or (ii) | B|g = 1 or (iii)

both | A| g = 1 and | B|g = 0. In each case, regularity gives that they have these values 
throughout the g-fiber. Given this, it's clear that in cases (i) and (ii), |A ► B |g,w and 

| A ⊲ B |g,w and | A ⊃ B |g,w are all 1 throughout the fiber, and in case (iii) they are all 0 
throughout the fiber. So for all w in the g-fiber, |A ► B|g,w = |A ⊲ B |g,w = |A 3 B |g,w; 
this establishes that the ◄►-biconditionals connecting them all have value 1 at g. □

§10. Equivalence and strong implication, and some laws. Call an L -formula A 
equivalent to an L-formula B, relative to <M, s>, if for every < g,v > eFM, | A|M,g,v,s = 
|B|M,g,v,s. Call them equivalent relative to M if for every assignment function s for 
M they are equivalent. Call them equivalent (full stop) if they are equivalent for every 
acceptable ground model M.

LEMMA10.1 (Intersubstitutivity). Suppose that XB results from XA by substituting one 
or more occurrences of A by B. Then for any M and s, if A is equivalent to B relative to 
M and s then X A is equivalent to X B relative to M and s. (It follows that the same holds 
with an elimination of the relativization to s, or to both M and s.)

Proof. By induction on number of substitutions, and for the case of one substitution, by 
subinduction on the complexity of the embedding of the substituted A within XA. □

Corollary 10.2. If ⊨M,s A ⇔ B, and XB results from XA by substituting B for one 
or more occurrences of A, then ⊨M,sXA⇔XB.

We can get similar substitution results for other contraposable biconditionals:

(1) For ◄►, the analog of the corollary is that if ⊨M,s A ◄► B, and XB results from 
XA by substituting B for one or more occurrences of A that are not in the scope 
of any → then ⊨M,s XB ◄► XB; it is established by noting that ⊨M,s A ◄► B 
corresponds to A and B having the same value on the principal fiber (what we 
might call principal-fiber-equivalence), and proving (in analogy to the proof of the 
equivalence theorem) that principal-fiber-equivalence is preserved under embedding 
of all connectives other than > .

(2) For ↔↔ (defined as (A ↔ B) Λ (­ A ↔ ­ B)), the analog of the corollary is 
that if ⊨M,s A ↔↔ B, and XB results from XA by substituting B for one or more
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occurrences of A that are not in the scope of any ⊲, then ⊨M,s XA ↔↔XB; it 
is established by noting that =M,s A ↔↔ B corresponds to A and B having the 
same value at all base nodes (what we might call base-equivalence), and proving 
(in analogy to the proof of the equivalence theorem) that base-equivalence is pre­
served under embedding of all connectives other than ⊲

Results for noncontraposable biconditionals, and for one-way conditionals (both contra­
posable and noncontraposable), are more complicated to state, and I will not take the 
trouble.

I will say that A strongly implies B if and only if ⊨ A ⇒B (permitting relativizations to 
M ,or toM and s, on both sides), and that A strongly implies B relative to assumption C 
if C = A B. Clearly strong implications are universal: if = A B then = univ A B. 
More generally, If Γ is any set of formulas of form T C, and Γ = A B, then
Γ ⊨ univ A⇒ B.

Here are some very obvious strong equivalences and strong implications (in one case, 
relative to assumptions):

⊨ ­ ­ A ⇔A 
= A ∧ B ⇔ B Λ A
= — (A∧ B) ⇔ (­ A v­ B), and similarly for the other deMorgan laws 
= [A Λ (B v C)]⇔[(A Λ B) v (A Λ C)]
= [ A Λ ∀xBx] ⇔ Vx [ A Λ Bx], whenx isn't free in A 
= [ A v ∀xBx] « ∀x [ A v Bx], whenx isn't free in A 
= ∀xA ⇔ A, when x isn't free in A 
= True((A)) A
= A Λ B A
T A = (A Λ B) B
= ∀x(Ax Λ Bx) ⇔ (∀xAx Λ '∀xBx)
= (∀xAx Λ ∃xBx)⇒ ∃x(Ax Λ Bx)
= ∀xAx At
= (A ► B) ⇔ (­ B ► ­  A)
= [A ► (B Λ C)]⇒ [(A ► B) Λ (A ► C)](similarly with all ► replaced by ⊲ ).
= [(A v B) ► C] ⇒[(A ► C) Λ (B ► C)](similarly with all ► replaced by ⊲)
= [A→(B ∧C)]⇒[(A→B) ∧ (A→C)](similarly with all ► replaced by ⊲)
= [(A vB)→C]⇒[(A→C) λ (B→C)](similarly with all ► replaced by ⊲)
= (A Λ ­ A)⇒(B v ­ B).

(Indeed when Q is a noncontingent Liar sentence, = (A Λ —A) Q and = Q 
(B v­ B).)
These are all quite trivial: they can be obtained from obvious super-validities using Limited 
⇒-Introduction.

Here is an important base-equivalence (which follows from laws below, but is worth 
stating separately here):

(W1): = (T ⊲ B) ↔↔ B



32

It shows a “near-redundancy” of‘T ⊲’: it is eliminable when not in the scope of a ► or ⊲. 
More generally,

(W1+): ⊨ (T → A) → ((A ⊲ B) ↔↔ B).

Proof. If |T → A|g = 1 then there is a Y e Pg such that for all h e Y, |A|h = 1; so by 
Regularity, for all < h,v > in F for which h e Y, |A|h,v = 1; so for all h e Y,

| A ⊲ B|h =
1 if for all v in Rh , | B|h,v = 1 
0 if for all v in Rh, | B|h,v=0
1/2 otherwise

But by regularity that just means that for all h e Y ,IA ⊲ B |h = |B |h .So | (A ⊲ B) ↔↔ 
B|g = 1. □

I now list some less trivial laws. I will note which ones are universally valid, since this 
implies further validities not listed. (In the case of → -conditional sentences, we’ve seen 
that validity, universal validity and super-validity all coincide, but it seemed less distracting 
to simply mark them as universally valid below.) This is not intended as a systematic 
exploration of the laws that hold in the system, but is intended to give the general flavor of 
the impact of the construction, including considerably more than just establishing the laws 
of restricted quantification given at the start of the paper.

L1: Modus ponens and related laws for →
L1a. A, A → B = B
L1b. If ⊤→ Γ = univ B → C then Γ, B ⊨ univ C; in particular, if = univ B → C

then B = univ C. (So if = univ B → C and = univ B then = univ C.)
L1c. T → A,(A Λ C) → B = univ C → B

Proof.
(a) If |A > B|@ = 1 then for all g in J ,if|A|g = 1 then |B|g = 1; so in particular 

this holds for g=@.
(b) Proved in note 26.
(c) Suppose that |(A λ C) → B|g = 1 and |T → A|g = 1. Then there is a Y1 in Pg

such that for all h e Y1,if|A Λ C|h = 1 then |B|h = 1; and a Y2 in Pg such that 
for all h e Y1, | A|h = 1. So letting Y be the smaller of them, we have that for all 
h ∈ Y, if |C|h = 1 then |B|h = 1. So |C → B|g = 1. □

L2: Modus ponens and related laws for ► and ⊲
L2a. A, A ► B ⊨ univB 
L2b. ⊨ univ

L2c. A, (A Λ C) ► B = univC ► B
L2d. = univ [a Λ ((A Λ C) ► B)] → (C ► B)

All of these hold also with o instead of ► .

Proof. (I’ll prove them for the ⊲-forms; the modification for ►-forms is obvious.)
(a) For any g, if | A ⊲ B |g = 1 then for all w in Rg, if | A|g,w = 1 then |B |g,w = 1; so in 

particular this holds for w=vg , so if |A ⊲ B|g = 1 and |A|g = 1 then |B|g = 1.
(b) From (a) by Limited > -Introduction. (Conversely, (a) follows from (b) by L1b.)
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(c) and (d) These are equivalent, by Limited →-Introduction and L1b. To establish (c): 
For any g, suppose |A|g = 1 and |(A Λ C) ⊲ B|g = 1. By the second equality, 
for every v in Rg, if |A Λ C|g,v = 1 then |B|g,v = 1. By the first equality and 
Regularity, | A|g,v = 1 for all v in Rg. From these we get that for every v in Rg if 
|C|g,v = 1 then |B|g,v = 1, and so |C ⊲ B|g = 1. □

Observe that from L1c and L2b we get 
⊨ Univ (T > B) →B,

and indeed the stronger version

(Mixed Assertion): ⊨univ (T→A)→[(A ⊲B)→ B];

and similarly with ► for ⊲ With L3 below, we get the biconditional versions
T A = univ(A ⊲ B) ↔ B 
T A = univ(A ► B) ↔ B

and their special cases
= univ(T⊲ B) ↔ B 
= univ(T ► B) ↔ B.

L3: Connections to d: positive

L3a. = univ(A ⊃ B)→→(A ► B)
L3b. T (A ⊃ B) = univ A→→ B

Proof.

(a) For any g ∈J : If |A ⊃ B|g = 1 then either |A|g = 0 or |B|g = 1, so by Regularity, 
either (∀v ∈ Rg)(|A|g,v = 0) or (∀v ∈ Rg)(|B|g,v = 1), so (∀v ∈ Rg)(|A|g,v ≤
|B|g,v), so |A ► B|g = 1. So A ⊃ B = univ A ► B, and Limited →-Introduction 
gives = univ(A ⊃ B)→(A ► B). And if |A ► B|g = 0 then for all v in Rg and
hence in particular at vg , |A|g = 1 and |B|g = 0, hence |A d B|g = 0. So also 
= univ→­ (A ► B) ­  (A ⊃ B).

(b) If |T (A ⊃ B) |g = 1 then there is a Y in Pg such that for all h e Y, either
|A|h = 0 or |B|h = 1, so for every such h, |A|h ≤ |B|h, that is, both = |A →B|g 
and = | —B­ A|g = 1. □

L4: Connections to d: negative

L4a. = univ ­  (A ⊃ B) ↔ ­ (A ► B). Similarly for ⊲.
L4b. = univ ­ (A→B) ⇒nc ­  (A ⊃ B)
L4c. —(A d B) = —(A B)

Hence ­  (A ⊲ B) = ­  (A→ B), by L4a.
— (A d B) is of course equivalent to A Λ —B, and it might be more natural to rewrite 

these using A λ—B .

Proof.

(a) |—(A d B)|g = 1iff|A|g = 1 and |B|g = 0, iff for all v in Rg, |A|g,v = 1 and 
|B|g,v = 0, iff |A ► B|g = 0. Limited Introd gives the result.

(b) If | —(A B)|g,v = 1 then |A|g,v = 1 and |B|g,v = 0, that is, |—(A ⊃ B)|g,v = 1.
So the inference is super-valid, so by Limited ⇒nc -Introduction, ⊨ univ ­ (A→
B) ⇒n. ­ (A ⊃B).
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(c) If |­ (A ⊃ B')|@ = 1, then since @ is in the only member of P@, @(A, B) < 1. 
Also | A|@ = 1 and |B|@ = 0. These things together give that | A B |@ = 0. □

As already remarked, the implication (c) isn't universal: it depends on the reflexivity 
of @.

L5: Conjunction laws. Let >> be any of the conditionals → ⊲ and ► (or, for that 
matter or ⇒nc, or any of the biconditionals).

(L5a) ⊨univ [(A >> B) ∧ (A >> C)]⇒nc[A >> (B Λ C)]
(L5b) = univ [(A ► B) Λ ­ (A ► (B Λ C))]→­  A ► C], and the same with all ►

changed to ⊲
(L5c) ⊨ univ [(A ► B) Λ (A ► C)]→→[A ► (B Λ C)], and the same with all ►

changed to ⊲
(L5d) (A→B) Λ ­ A→(B Λ C)) ⊨ ­ [A→C]
(L5e) ⊨ [(A→ B) Λ (A→ C)] ► [A→ (B Λ C)]

Proof.

(a) Given Limited ⇒nc -Introd, we need only that for all g in J , and all v in Rg, if 
| (A >> B) Λ (A >> C) |g,v = 1 then |A >> (B Λ C) |g,v = 1.
When >> is ► : If (for a given g and v) |(A ► B) Λ (A ► C)|g,v = 1 then 
there are S1 and S2 in Zg,v such that for all w in S1, |A|g,w ≤|B|g,w, and for 
all w in S2, |A|g,w ≤ |C|g,w. Letting S be whichever is smaller, for all w in S 
both |A|g,w <|B|g,w and |A|g,w <|C|g,w, and so |A|g,w <|B Λ C|g,w.So 
|A ► (B Λ C)|g,v = 1.
Analogously for ⊲ , and pretty much analogously for too: If (for a given g and 
v) |(A →B) Λ (A→ C) |g,v is 1 (which actually is independent of v), there are Y1 
and Y2 in Pg such that for all h in Y1 if|A|h = 1 then |B|h = 1 and for all h in Y2 
if |A|h = 1 then |C|h = 1. So going to the smaller, there's a Y such that for all h 
in Y, if |A|h = 1 then |B Λ C|h = 1, so |A (B Λ C)|g = 1, and this value is 
unchanged for other v in Rg.

(b) Given Limited →-Introduction, we need only that for all g in J , if |A ► B|g = 1 
and |A ► (B Λ C)|g = 0 then |A ► C|g = 0. Suppose |A ► B|g = 1. Then for 
all w in Rg, if |A|g,w = 1 then |B|g,w = 1. If |A ► (B Λ C)|g = 0 then |A|g = 1, 
and either |B|g = 0or|C|g = 0. But by the previous, |B|g (i.e., |B|g,vg) can't be 0, 
since vg is in Rg.So|A|g is 1 and |C|g is 0, and Regularity gives that for all w in 
Rg, |A|g,w = 1 and |C|g,w = 0, and so |A ► C|g = 0.

(c) I showed earlier that ⇒nc universally implies →; so the claim follows from (a), 
and we need only show that for all g in J , if | A ► (B Λ C) |g = 0, then for all w in 
Rg, |A|g, w = 1 and |B Λ C|g,w = 0. In particular the second holds at vg, so either 
|B|g,vg = 0or|C|g,vg = 0, so by Regularity either for all w in Rg |B|g,w = 0or 
for all w in Rg |C|g,w = 0. Since in addition for all w in Rg |A|g,w = 1, we have 
that either | A ► B |g = 0 or | A ► C|g = 0.

(d) Suppose |A→B|@ = 1. Then for all h in J , if |A|h = 1 then |B|h = 1. If
|A→ (B Λ C)|@ = 0 then |A|@ = 1, either |B|@ = 0 or |C|@ = 0, and by the
previous it must be that |A|@ =|B|@ = 1 and |C|@ = 0. Given the reflexivity of 
@, this is enough to establish that | A C |@ = 0.

(e) The corresponding ⊲ claim follows from (a), so what's needed in addition is that
for all v in R@, if |A→ (B Λ C)|@,v = 0 then |(A→B) Λ (A C)|@,v = 0.
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(if |B|h = 1 then |C|h = 1) then (∀h e G)(if |A|h = 1 then |C|h = 1); so for any 
g ∈J, if g(B, C) = 1 then g(A, C) = 1. Now for any g ∈J , if |A C|g = 0 
then g(A, C)<1, |A|g = 1, and |C|g = 0; so by what's been shown we have 
g(B, C) < 1, |B|g = 1, and |C|g = 0; so |B C|g = 0. □

Note that the implications (b-i) and (b-ii) aren't universal: they depend on the reflexivity 
of @.

L8: Exportation.

(L8a) ⊨ univ [A λ B ⇒nc C]→[A→(B ⊲ C)]
(L8b) = univ [a Λ B⇒C]→[A→(B ► C)].

Proof. For (a), we need that for any g e J , if | A Λ B ⇒nc C|g = 1 then | A (B ⊲
C)|g = 1. Suppose the former. Then for some G in Pg, (∀h ∈ G)(|A Λ B ⊲ C\h = 1). 
But by (the ⊲ version of) L2c, this implies that (∀h ∈ G)(if | A|h = 1 then |B ⊲ C |h = 1), 
which means that | A (B ⊲ C)|g = 1. The (b) case is analogous. □

L9: Suffixing and Prefixing. Let >> be as in L5.

(L9a) = univ(A>> B)→[(B>>C)⊲ (A>>C)] and ⊨ univ (A>> B)
[(C > A) ⊲ (C >> B)].

(L9a+) Indeed when > is ⊲ or ►, we have = univ(A >> B) [(B > C) ►
(A >> C)], and when it's ► we also get ⊨ univ(A >> B) [(C > A) ►
(C >> B)].

(L9b) = univ(A⇒B)→[(B ► C)→→(A ► C)] and ⊨ univ(A⇒B)→
[(C ► A) →→ (C ► B)].
Similarly, = univ(A⇒ncB)→[(B ⊲ C)→→ (A ⊲ C)] and
= univ(A ⇒nc B)→[(C ⊲ A)→(C ⊲ B)]·

(L9c) ⊨ univ [T→(A→B)]→[(B→C)→(A C)] and = univ [T
(A→B)]→[(C→A)→(C →B)]

Regarding (a+), (b) and (c), note that we wouldn't expect the ► version of prefixing for a 
noncontraposable conditional: if Q is the Liar sentence, Q >>⊥ gets value 1 everywhere 
when >> doesn't contrapose; but (T>> Q) ► (T>> ⊥) requires -(T >⊥) ⊲ -(T >> 
Q), which will have value 1/2 at every node since at every node -(T >1) has value 1 and 
-(T> Q) has value 1/2.

Proof.

(a) Applying Exportation L8a (or the rule that results from applying modus ponens to 
it) to the version of Positive Conjunctive Syllogism for the appropriate conditional, 
we get the Suffixing claim (A >> B)→[(B >> C) ⊲ (A >> C)]. If we reverse
the conjuncts in Positive Conjunctive Syllogism before applying Exportation, we 
get (B >> C)→[(A >> B) ⊲ (A >> C)], which upon relettering gives the desired
Prefixing result.

(a+) Similarly, when >> is ⊲ or ►, applying Exportation to Negative Conjunctive Syllo­
gism in form L7a, we get (A >> B)→[­ (A >> C) ⊲ -(B >> C)], which with
L5a and L9a gives (A >> B)→[(B >> C) ► (A >> C)]. A special case of that
result is (­ B >> - A)→[(­  A >> -C) ⊲ (­ B >> ­ C)], which when >> is the
contraposable ► yields (A >> B) [(C >> A) ► (C >> B)].
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(b) and (c): For any g e J , suppose |T (A >> B)|g = 1. (Recall that the definitions
of and ⇒nc have this form.) Then for some G ∈ Pg, (∀h ∈ G)(| A >> B|h = 1). 
Then

(i) By Positive Conjunctive syllogism, we have that (∀h ∈ G)(if |B >> C |h = 1 then
|A >> C|h = 1), and so |(B >> C)→(A>> C)|g = 1; and that (∀h ∈ G)(if
|C >> A|h = 1 then|C >> B\|h = 1), and so |(C >> A)→(C >>B)|g = 1.

(ii) When »is > or ► , Negative Conjunctive Syllogism in form L7a yields that (∀h e
G)(if |A >> C|h = 0 then |B>> C|h = 0); so |-(A >> C)→ ­ B >> C)g = 1.
(i) establishes L9c and much of L9b; what's left is the contrapositive direction of 
the three claims. (ii) establishes the contrapositive in Suffixing when >>is 
⊲ or ► . And when >> is the contraposable ► , we get the Prefixing claim from the 
Suffixing claim. □

An argument analogous to that in L9a also yields the related laws
⊨univ -(A >> C)→((A >> B) ⊲ -(B >> C)).28

L10: Strong Explosion.

⊨ univ A ∧ ­ A ⇒nc B.

Proof. Obvious. □

(Any analog with a contraposable conditional ⇒nc in place of ⇒nc obviously fails: it 
would lead to - B >> (Av­ A), by deMorgan's and double negation, and hence to excluded 
middle by modus ponens for >> when B is ⊥.)

L11: Laws of Quantified Conditionals.

(L11a) ⊨ univ∀x(Ax ► Bx)→→(∀xAx ► ∀xBx) and ⊨ univ∀x(Ax ► Bx)
(∃xAx ► ∃xBx); and analogously for ⊲

(L11b) ∀x (Ax→Bx) ⊨ ∀xAx→∀xBx, and ∀x (Ax Bx) = 3xAx→ 3xBx
(L11c) ­ (∀xAx→ ∀xBx) ⊨ ­ ∀x(Ax→Bx), and ­ (∃xAx→ 3xBx) = ­ Vx

(Ax→ Bx)

Proof. (a) (For >:) We need that for any g, |∀x(Ax ⊲ Bx)|g < |VxAx ⊲ VxBx|g and 
|∀x(Ax ⊲ Bx)|g < |3xAx ⊲ 3xBx|g.

(1) Suppose |∀x(Ax ⊲ Bx)\g is 1. Then for each t (in L+M) and each w in Rg, if 
| A(t)|g,w is 1 then | B(t)|g,w is 1. It follows that for each w in Rg :

(i) if for each t (in L+M) | A(t)|g,w is 1 then for each t | B(t)|g,w is 1
(ii) and if for some t (in L+M) |A(t)|g,w is 1 then for some t |B(t)|g,w is 1. So 

|∀xAx ⊲ ∀xBx|g and |∃xAx ⊲ ∃xBx|g are 1.

(2) Suppose |VxAx ⊲ VxBx|g = 0. Then for all w in Rg, |VxAx|g,w = 1 and 
|VxBx|g,w = 0; in particular this holds at vg. So there is a t (in L+M) such that 
| A(t)|g = 1 and |B(t)|g = 0, and hence (by Regularity) such that at all 
w in Rg |A(t)|g,w = 1 and |B(t)\g,w = 0. So |A(t) ⊲⊲ B(t)g = 0 and so 
|Vx(Ax ⊲ Bx)\g = 0. The argument for when |∃xAx ⊲ ∃xBx|g = 0 is analogous.

28 To get analogs of this with in place of ⊲ one needs to beef up the antecedent ­ (A >>C) to
T →­ A » C); moreover, when » is one must weaken to (nonuniversal) rule form.
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(b) Suppose that for every t (in L+M), |A(t)→ B(t)|@ = 1. Then for each t, and
each g in J,if| A(t)| g = 1 then | B(t)|g = 1. Reversing quantifiers and distributing 
the “for each t” quantifier, we have that for each g in J:ifforeach t |A(t)|g = 1 then 
for each t |B(t)|g = 1, and if for some t |A(t)|g = 1 then for some t |B(t)|g = 1. 
So if |VxAx|g = 1 then |VxBx|g = 1, and if |3xAx|g = 1 then |3xBx|g = 1; so 
|VxAx VxBx|@ = |3xAx 3xBx|@ = 1.
(c) If |VxAx VxBx|@ = 0 then |VxAx|@ = 1 and |VxBx|@ = 0. So for some t,
| At |@ = 1 and |Bt |@ = 0. Using reflexivity of @ we have that | At →Bt |@ = 0, 
and result follows. Similarly for second. □

There are corollaries for other defined conditionals, such as For instance

Observation: ∀x(Ax→→Bx) ⊨ ∀xAx→→∀xBx.

Proof. The premise says that ∀x (Ax→Bx) Λ ∀x (­  Bx→— Ax). Applying both
parts of L11b we get (∀xAx→∀xBx) λ (∃x ­  Bx→∃x—Ax), which is equivalent to
(∀xAx ∀xBx) Λ (­ ∀xBx —∀xAx), that is, to ∀xAx ∀xBx. □

Part 4. CONCLUSION

§11. Restricted quantification again. It should be fairly obvious that the previous 
two sections are more than enough to verify my promises in Section 1, including but not 
limited to the validation of the target laws of restricted quantification; and indeed that it 
validates their strengthened versions given in Section 3. But let's make it official.

First, I required the standard structural rules, and reasoning by cases (v-Elimination and 
∃-elimination); and I required modus ponens for I've established these (and modus 
ponens for ⊲ and hence ► as well).

Second, I required that the conditionals “collapse to ⊃ in classical contexts”. More 
precisely, any such conditional is fully equivalent to the corresponding ⊃-conditional on 
the assumption of strong excluded middle for its antecedent and consequent; that is,

(T →A) v (T→­ A), (T B) v (T —B) = (A ⊲ B) (A ⊃ B),
and similarly with for ⊲. I've established these. I also required A Λ —B = ­ (A→B),
which was established in L4c.

Third, I promised a number of laws of universal restricted quantification, when 
∀x(Ax/Bx) is defined as ∀x(Ax ► Bx). The promised laws are all →-conditionals (or 
→→-conditionals), so as noted before, demonstrating their validity is in effect verifying 
their super-validity. The laws, stated in terms of ►, were as follows:

(I): = ∀y[[∀x(Ax ► Bx) Λ A(y)]→B(y)] [where in Ax ► Bx, x is not in the
scope of any quantifier attached to the variable y]

(IIexp): = ∀xBx→→∀x (Ax ► Bx)
(III): = [∀x (Ax ► Bx) ∧x (Bx ► Cx)]→∀x (Ax ► Cx)

(Invar): [∀x(Ax ► Bx) Λ ­ ∀x(Ax ► Cx)]→­ ∀x(Bx ► Cx)
(IVexp): ⊨Vx (Ax ► Bx) Λ ∀x (Ax ► Cx) ∀x (Ax ► (Bx Λ Cx))
(IVvar): [[∀x(Ax ► Bx) Λ —∀x[Ax ► (Bx Λ Cx)]] —∀x(Ax ► Cx)]
(Vexp): ⊨­ ∀x(Ax ► Bx)→→∃x(Ax Λ ­ Bx)

(VI): = 3x (Ax Λ ­ Bx)→­ ∀x (Ax ► Bx)
(Cexp): ⊨ ∀x(Ax ► Bx) ⇔ ∀x(­ Bx ► ­  Ax)
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The proofs are rather trivial given the results already established, but just to be explicit:

Proof. (Cexp): From our early list of strong equivalences we have 1= (Ax ► Bx) ⇔ 
(­  Bx ► ­ Ax); by the Intersubstitutivity Corollary of Section 10, (Cexp) follows.

(I): By L2b we have = [(Ay ► By) Λ Ay] By; and = ∀x(Ax ► Bx)
(Ay ► By) since the antecedent strongly implies the consequent. So by L6+, 
= [∀x(Ax ► Bx) Λ Ay] →By, which gives (I) by universal generalization 
(which is trivially valid, given the definition of validity and the quantifier rules).

(IIexp): By L3a (since of course = B (A d B)) we have = Bx→→ (Ax ► Bx).
By generalizing and applying the Observation based on L11b, we get the result.

(III): By L6 we have = [(Ax ► Bx) Λ (Bx ► Cx)]→(Ax ► Cx). By generalizing
and applying L11b, and using the strong equivalence of ∀x [X λΥ ] to ∀Χλ∀xΥ 
and therefore their intersubstitutivity, we get (III).

(IIIvar): Applying L11b to the generalization of L7a, we get = ∃x[(A ► B) Λ ­ (A ► 
C)] ∃x­ (B ► C); but by one of the strong implications, also = [∀x(A ►
B) Λ 3x­ ((A ► C)]→∃x[(A ► B) Λ­ (A ► C)]. By transitivity (and 
rewriting ∃x ­  as ­ ∀x) we get the result.

(IVexp): By L5d, = (Ax ► Bx) Λ (Ax ► Cx)→→(Ax ► (Bx ∧ Cx)). Proceed as in
(III), but using L11b for one direction and L11c for the other.

(IVvar): Applying L11b to the generalization of L7b-i, we get = 3x [(A ► B) ∧ ­  A ►
C) ]→∃x­ (B ► C); from which we get the desired result by the method used 
for (IIIvar).

(Vexp): By L3a we have = (Ax ⊃ Bx)→→(Ax ► Bx), so generalizing and using
the Observation based on L11b, = ∀x (Ax ⊃ Bx)→→∀x (Ax ► Bx);
contraposes, so this is equivalent to (Vexp).

(VI): By L4a we have = ­ (Ax ⊃ Bx)→­  (Ax ► Bx); so generalizing and using
the 3 half of L11b, ⊨ ∃x­ (Ax ⊃ Bx)→∃x­ (Ax ► Bx), which is equivalent
to (VI). □

I don't claim that every apparent law that might sound plausible has been established. 
In particular, certain plausible-sounding laws involving nested conditionals will fail.29 Of 
course, any classically valid law of conditionals is bound to hold in contexts where the 
claims involved obey strong excluded middle, since all the conditionals reduce to d there; 
but it might seem disappointing that they don't hold more generally. But I remind the 
reader of a remark made at the end of Section 1: the goal wasn't to validate every law that 
superficially “sounds right”, it was to validate enough to yield a logic with which we could 
actually reason. And I hope that the laws I've established at least give initial plausibility to 
the idea that with the conditionals here or something close to them, we could do that.

§12. The prospects for other approaches. I expect that some variations on the ap­
proach to restricted quantification presented in this paper are possible within naive truth

29 Some failures, such as “If x is A, then if all A are B then x is B ”, can be handled by the special 
convention that in English, “If A then if B then C ” is usually read as meaning “If A and B then 
C ”. (There seems to be no natural such convention that would have avoided the problem posed 
by restricted quantification.)
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theory;30 indeed, I'd expect, and hope for, variations that give rise to clear improvements 
in the laws. But what about the prospects for a radically different approach?

One thing one can certainly hope for is an approach involving only a single conditional. 
I've remarked that this inevitably requires the failure of some of the laws on my menu 
from Section 1 (and the expanded menu in Section 3), but one might be able to swallow 
that if suitably strong approximations to them were available. One natural idea is to look 
for a naive truth theory for the logic CK (also called RWK), which is a weakening of 
Lukasiewicz continuum-valued logic; I won't specify it in detail (you can find it in Priest, 
2008, p. 228), but it is a nonparaconsistent logic, and the laws involving the conditional 
include modus ponens plus A A plus

(CONTRAP): ⊨ (A→B)→(­ B→-A)
(CONJ): = [(A→B) Λ (A→C)]→[A→(B Λ C)]

(WEAKENING): = B (A→B)
(ASSERTION): ⊨ A→[(A→B) →B]

(SUFFIX): = (A →B)→[(B →C)→(A →C)].

(Note that while there are analogs of all of these in the system I've given, most require 
the two distinct conditionals and hence are weaker.) It is not known whether a naive truth 
theory is possible in CK—more on this in a moment—but even if it is, one must give up 
on items (I), (III), (IIIvar), (IVvar), and (VI) from my initial menu. (I) must go because 
as remarked earlier, it leads to Curry's paradox in a single-conditional theory. (VI) must 
go because with even the rule form of contraposition and A A it requires excluded 
middle. (IIIvar) and (IVvar) must go because each leads to excluded middle for conditional

30 One variation that will be obvious to those familiar with Field (2008) is to use revision-theoretic 
constructions for the fibers and/or the base-space, modeled after the fixed point constructions used 
here. For instance, to construct the fiber for a given →-booster g, we'd let

1 if (∃κ < μ)(∀ξ ∈ [κ, μ))(if |A|g,ξ = 1 then |B|gξ=1)
Vgμ(A ⊲ B)=0if (∃κ< μ) (∀ξ∈[κ,μ))(| A|g£ = 1 Λ|B|gξ = 0)

1/2 otherwise.

The fiber for g would consist of the members of this sequence that keep coming back; its base 
node would be vg,∆ where Δ is a reflection ordinal for the sequence (in the sense of Gupta & 
Belnap, 2003, p. 172). This would yield a Regularity Theorem for fibers. Similarly, letting || A|| g 
be the value of A at the reflection ordinal for g, we'd let

gα (A→B) = 1 if (∃β <a)(∀Y ∈ [β,a))(if ||A||g, = 1 then ||B||gy = 1) 
gα(A→B) = 1/2

 otherwise.

The base space would consist of the members of this sequence that keep coming back, and 
the principal node would be the value at the reflection ordinal for this sequence. (The Kripke 
construction would be like the one in the present paper: an -conditional can get value 0 even 
when its g-value is 1/2.) The “Fundamental Theorem” of Field (2008) would fail for the same 
reason that “Regularity” fails for the base space in the present construction.
I haven't checked this out fully, but I doubt that it would lead to very different laws than those 
given by the present construction. I chose the fixed point construction rather than the revision 
construction in this paper partly because it is new and partly because it strikes me as somewhat 
more natural.
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sentences,31 and CK is incompatible with that since it requires the Curry sentence to behave 
like the Liar sentence. (III) must go because it requires

(CS): [(A→B) Λ (B→C)]→[A→C]
(“single conditional conjunctive syllogism”) which, given (ASSERTION) and (SUFFIX), 
leads to (I) and thus the Curry paradox.32

But what about “strong approximations” to (I), (III), (IIIvar), (IVvar), and (VI)? Be­
cause of (ASSERTION), we would get

(I-alt): = If x is A, then if all A are B then x isB.

Also, it's a feature of CK that we can define in it a strengthened conjunction ◦ called 
“fusion”, with many of the properties of conjunction: A ◦ B is —(A ­ B). Perhaps a
sufficiently strong approximations to (I), (III), (IIIvar), and (IVvar) are (I-alt) and

(I-fus): ⊨ If (all A are B)◦ (x is A) then x is B,
(III-fus): ⊨ If (all A are B)◦ (all B are C) then all A are C

(IIIvar-fus): = If (all A are B)◦ (not all A are C) then not all B are C
(IVvar-fus): ⊨If (all A are B)◦ (not all A are both B and C) then not all A are C.

And perhaps a sufficiently strong approximation to (VI) is its rule form
(VI-w): Something is both A and not B = Not all A are B.

These are consequences of CK, so if they are satisfactory surrogates then we could handle 
restricted quantification in a naive truth theory with a single conditional by getting a naive 
truth theory for CK.

But as I've said, no one knows how to give a naive truth theory for CK—the question of 
whether this could be done was explicitly raised in print 20 years ago (Restall, 1992), but 
no one seems to have made significant progress on it.33 Probably the naive truth theories

31 It suffices to show that both lead to [(A→B) Λ­  (A→B)]→⊥ , since by (CONTRAP)
and modus ponens and Kleene laws that yields (A→B) v ­  A→ B). But (IIIvar) requires
[(A →B) Λ ­ (A→C)]→­  B→ C), and if one takes C to be B one effectively gets [(A→
B) Λ ­ (A→B)]→⊥. And (IVvar) requires [(A →B) Λ ­  A →(B Λ C)]] ­  (A→ C),
and if one takes C to be A one effectively gets the same thing.

32 Greg Restall pointed this out to me some years back. Argument sketch:
(1) A special case of (ASSERTION) is B [(B→B)→B]; and it's easy to get from that to

[B Λ (B→ C)]→[[(B→B)→B] Λ (B→C)].
(2) A special case of (CS) is [[(B→ B)→B] Λ (B→C)]→[(B→B) C].
(3) From these together we get [B Λ (B→C)]→[(B→B)→C], by transitivity.
(4) In Anderson & Belnap (1975, pp. 79-80) it is observed that (ASSERTION) and (SUFFIX)

suffice for (PERM), that is, the schema 1= [A→ (B→C)]→[(B→(A→C)]. (Use the
instance B→[(B→C) →C] of (ASSERTION), and apply the rule form of (SUFFIX)
to get [[(B→C)→C]→(A→C)]→[B→(A→C)]. So to get to (PERM) we
need only [A→(B→C)]→[[(B→C)→C]→(A→C)], and that is an instance of
(SUFFIX).)

(5) But applying (PERM) to the result of (3), we get (B B) [[B Λ (B C)] C]. So
by B B and modus ponens we derive pseudo-modus ponens, that is, (I).

33 I have heard claims in conversation that it is known to be possible, but they rest on at least one 
of the following weakenings of the demands. One weakening is to a logic without the ordinary 
conjunction and disjunction. The other weakening gives up the requirement of conservativeness in 
the sense of Section 4, replacing it with a mere consistency requirement. That somewhat trivializes
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in print for logics that come closest to CK (though they don't come very close at all) 
are my own in (2008) and several much earlier ones of Ross Brady's, most of which are 
discussed in his (2006). Neither he nor I claimed to give an account of account of restricted 
quantification; and if one had defined the restricted universal quantifier in terms of the 
conditionals he or I provided, the accounts would have been ludicrous.

In the case of Field (2008), the logic contains (CONTRAP), but only the rule forms of 
(CONJ), (WEAKENING)34, and (SUFFIX), and not even the rule form of(ASSERTION), 
that is, not even

(WEAK ASSERTION): A ⊨ (A →B)→ B.
The laws of restricted quantification that would have been delivered would have been, to a 
close approximation, those that would be delivered by the construction of this paper were 
all “if...then's” understood as ►. This means that not only (I) would fail (as is inevitable 
on a single-conditional construction), but so would (I-alt), and indeed so would even

(I-vw): x is A = If all A are B then x is B 
and

(I--vw): Everything is A = If all A are B then everything is B.
(II) and (V) would fail too: only their rule forms would hold (though as regards (II), see 
note 34). (III) would fail too: the best we could get is

(III-vw): All A are B = If all B are C then all A are C
and the analog with ‘All A are B' and ‘All B are C' switched. Analogously for (IIIvar), 
(IV), and (IVvar). (And (VI) would also hold only in weakened rule form, but that's 
inevitable on a single conditional theory). As I said, that would be ludicrous for an account 
of restricted quantification. Brady's preferred one-conditional logics are in some respects 
stronger than the one in Field (2008): they contain (CS), and the full (CONJ) rather than 
just the rule form. But like Field (2008) they don't validate even (WEAK ASSERTION), 
so were one to define restricted quantification one wouldn't get even the very weak forms 
(I-vw) and (I--vw) of (I) and (I-); and as with Field (2008) one would get only the rule 
form of (VI).

But things would be much worse: it's a feature of the Brady semantics that conditionals 
are often evaluated as false when they have true consequents or false antecedents. Because 
of this, if one used this conditional for restricted quantification not even the rule forms of 
(II) or (V) would hold. Thus from “Everything is B” one wouldn't be able to infer “All A 
are B”, and from “Notall A are B”one wouldn't be able to infer “Something is both A and 
not B”. That would be even more ludicrous as an account of restricted quantification than 
using Field (2008). For these reasons, Brady prefers a two-conditional account of restricted 
quantifiers (Beall et al. 2006), to be discussed below.

the task at hand, since it's been known for many years that a naive truth theory is consistent even 
in Lukasiewicz continuum valued logic (see White, 1979); the problem is that in that logic the 
theory isn't ω-consistent, that is, consistent with a standard model of syntax (see Restall, 1992), 
which also prevents a consistent naive satisfaction theory with the usual compositional rules for 
the quantifiers (see Hajek et al., 2000). It was partly to prevent such pathologies that I insisted on 
a conservativeness requirement.

34 Though I only realized it later, the trivial way of getting (WEAKENING) while retaining 
(CONTRAP), namely defining a new conditional in terms of the old by disjoining with the 
material conditional, seems not to have a cost with respect to other laws of this system. Though 
that's largely because the other laws are so weak!
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Part of the problem with using either the logic of Field (2008) or any of the main logics 
of Brady (2006) to define restricted quantification is that in them, the single-conditional 
is contraposable (as it is in CK). If one is intent on a single-conditional approach, one 
might do better exploring logics where it isn't (even in rule form). Andrew Bacon (2013) 
has recently made considerable progress along these lines: he uses a novel construction 
based on the Banach Fixed Point Theorem. (He presents the construction for a language 
without a real negation, but has suggestions for how such a negation could be added; when 
I say that he's concerned with a noncontraposable conditional I mean that it would be 
noncontraposable were negation added.35) His construction validates many theorems of 
(CK) and some nontheorems such as (CS); this last is nice because it gives (III). The main 
downside is that not only does it not yield (I) (as is inevitable in a single-conditional theory 
with modus ponens), it also doesn't yield (I-alt) or even (I-vw) or (I--vw).36 Also, once 
negation is added it not only doesn't yield (Ic), it doesn't yield even the rule forms of(IIc) 
and (V*) either. I think any of these makes it inadequate as a single-conditional theory. 
On the other hand, maybe it or something like it could serve as one conditional in a two- 
conditional theory? That's definitely worth thinking about. (I only saw Bacon's paper after 
I'd completed this one, so I'm going to have to leave matters at that.)

One could also explore the possibility of two-conditional theories where the conditional 
with respect to which restricted quantification is defined is just (A →B) Λ (­ B → ­ A), 
where → is the conditional used for ‘if... then'. I know of no reason in principle why one 
couldn't get all the target laws including (I) in such a theory, and if one could it would 
have obvious advantages of theoretical economy over the approach I've given. But I have 
no idea how to give a conservativeness proof for naive truth in any such theory.

I turn last to attempts within the paraconsistent tradition for naive truth theory. Several 
authors in this tradition appreciated the problem posed by restricted quantification well 
before I did. The two main discussions I know of are Beall et al. (2006) and Beall (2009). 
In both cases, the authors first consider single conditional accounts and find them wanting. 
Their reason is that the single conditional ‘→' that they consider, like the ‘→' in this paper, 
does not satisfy the rule

(WEAK >-WEAKENING): B = A → B.

So they propose two-conditional accounts, where the second conditional (which I'll write 
as >, though neither it nor the → are the same as the ones in prior sections of this paper) 
does obey the analogous

(WEAK >-WEAKENING): B = A > B.

35 Of course as he notes, one can easily define a contraposable conditional from a noncontraposable 
one; but the new one may not validate the laws that made the old one attractive.

36 Bacon has since pointed out to me that this is inevitable in a one-conditional naive theory that 
validates (WEAKENING), (CONJ), and (CS) (and modus ponens and very weak additional 
assumptions). The argument, which he credits to Tore Fjetland Ogaard, uses the Curry sentence 
K. (WEAKENING) gives K → (T → K), and the defining property of K (plus naivety) 
gives K → (K → ⊥); (CONJ) then yields K → [(T → K) Λ (K → ⊥)]. And (CS) gives 
[(T → K) ∧(K → ⊥)] → (T → ⊥). By a very weak transitivity rule (which follows from (CS), 
modus ponens and Λ-Introduction), the last two conclusions give K →(T →⊥). But (I-vw) is 
effectively the same as (WEAK ASSERTION), which gives (T →⊥) → ⊥; so using the weak 
transitivity rule again we get K >1. That's equivalent to K, so modus ponens yields triviality. 
I think this argument shows that (CS) has an unexpectedly high cost in a single-conditional theory, 
even without contraposition.
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(I use ⊲ rather than ► for their second conditional since they take it to be noncontra­
posable.) So far very much like the account in this paper. However, though the second 
conditional in Beall et al. (2006) obeys the >-weakening rule and hence delivers the rule 
form of (II), it doesn't satisfy the stronger >-weakening axiom and so does not deliver the 
full (II).

This seems a substantial limitation. Beall (2009) recognized this, and his preferred 
account (p. 125) gets the strengthening by a different version of ⊲ from that in Beall et al. 
(2006): he uses a ⊲*, with A⊲* B defined to be simply (A→ B) v B, where is the 
conditional of the 2006 paper. But though this gives (II) in full form, it has tremendous 
costs: in particular, it precludes the validity of even the rule form of CONJ(and hence even 
the rule form of (IV)). The problem is that if A ⊲* B holds by virtue of A B holding, 
and A ⊲* C holds by virtue of C holding, then one can't infer A ⊲* (B Λ C) unless one 
can infer it from (A→ B) Λ C; and since with the 2006 conditional Beall is working with 
one can't infer A C from C, there is no way to do this.

This problem would be alleviated had he started not from the in Beall et al (2006) 
but from the ⊲ in that paper (or some other conditional for which (WEAK WEAKENING) 
holds), that is, had he defined A ⊲* B as (A ⊲ B) v B;37 but even then, the move would 
mean that even if the full (CONJ) holds for ⊲ only the rule form holds for >*. In short, 
using the disjunctive trick to strengthen (II) from a rule to the full conditional results at 
best in a corresponding weakening of (IV).

Another matter: in both Beall et al. (2006) and Beall (2009) it is assumed that the 
conditional ⊲ that goes with the restricted quantifier is to be “rule-weaker than” →, in 
the sense that

(W): A B = A ⊲ B.

This imposes a high cost: it rules out (I). (For with (W), (I) requires single-conditional 
pseudo-modus-ponens for ⊲, which is incompatible with naive truth.) Indeed, those papers 
don't even deliver (I-vw) and (I--vw), though I see no obvious reason why some other 
paraconsistent account couldn't have these even if it contained (W).

To partially summarize what we have so far, no available paraconsistent two-conditional 
account delivers even (I-vw) or (I--vw), and none delivers both the full (II) and the full 
(IV).Butas faras I know there is no reason why improved para consistent theories couldn't 
obtain these.

But there are also in principle limitations on what any approach to the paradoxes that 
admits acceptance gluts (and hence disallows the explosion rule A, - A = B) could deliver. 
The chief such limitation is that (assuming that the restricted quantifier conditional ⊲ obeys 
modus ponens) we cannot have the rule

­  A ⊨ A ⊲ B,

since with modus ponens it leads to explosion. It follows that we can't have 

-(A Λ-B) = A ⊲ B,

since its antecedent is weaker. Because of these, we can't have even the rule forms of (IIc) 
(from Section 1) or (V*) (from Section 3): for instance, we can't infer from “Nothing is

37 He didn't because the account in Beall et al (2006) hasn't actually been shown consistent with 
naive truth theory, it is merely conjectured to be.
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both A and not B”to“AllA are B”.38 (Orrather: a paraconsistent dialetheist can keep these 
inferences only by disallowing modus ponens for ⊲ and thus disallowing the inference 
from “All A are B” and “c is A”to“c is B”.) These limitations are fairly obvious, and 
presumably anyone with an independent commitment to accepting both the Liar sentence 
and its negation will be prepared to swallow them. But they strike me as a heavy intuitive 
cost, and this seems to me to give a reason to prefer rejecting both the Liar sentence and 
its negation rather than accepting them.

§13. Acknowledgments. Thanks to two anonymous referees for helpful suggestions 
that have led to improvements.
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	15 Does this conflict with well-known results on the “nonconservativeness of truth” (reviewed in Halbach, 2011 and Horsten, 2011)? The compositional laws will hold in the logic (or at least, they would if the construction were done with a satisfaction predicate, to allow the composition laws for the quantifiers to be expressed), and I've already noted that the rule of mathematical induction will extend to formulas containing ‘True' and ‘Satisfies'; in these circumstances, there's a sense in which the additi
	12
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	of sentences in the ground language, then Γ augmented with the claim (CLASS) that all sentences in the ground language are classical is *-consistent in the new logic. So we can safely assume (CLASS) in the new logic, and when we do, all classical proofs in the ground language carry over to the new logic essentially unchanged.)
	(On another matter, it makes no difference whether ‘all formulas in it are classical' is formulated
	13
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	18 Note that the space F M and the value space VM based on it depend on the starting model M. In particular, as the cardinality of M increases, that of F M and VM will typically increase. Everything here is model-relative; the construction will give no sense to any model-independent notion of a sentence's value. That is an additional reason why we should not try to associate any of the values with truth.
	there isn't any real connection to necessity or possibility, just a formal analogy to modal semantics.)
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	Before turning to this, I'll make another notational simplification. I'll need to consider valuations of formulas relative to several parameters, and having additional subscripts for the assignment function would make for a very cumbersome notation. A common method
	19 Of course there's no loss in expressive power: for a formula A (of L or even L+), |A|g,v,s is
	1 if (∃τ < σ)(∀u ϵ [τ,σ))(|B\g,v,u = 1)
	15
	1 if g(A→B) = 1
	§6. The Kripkean construction in this setting. The task of this section is to generate, for each →-booster g and ⊲-valuation v, a privileged 3-valued extension Tg,v for ‘True' which is “the appropriate one given g and v”. I'll use Kripke's minimal fixed point con­struction. (It isn't really essential to stick to the minimal fixed point, but for convenience I will.) The only novelty, and it's slight, is that the construction will be given in the context provided in the last section, where the values for →-co
	Here, |B|g;V;v means the value of B relative to g and v and to the choice of Tg;V;u as the 3-extension of ‘True'. (Note that if o is an L+-sentence that isn't an L-sentence, Tg,v,σ(o) is always 0.)
	16
	16

	of B →C could only change from 0 to anything else if the value of B changed from 1 to something else or the value of C changed from 0 to something else; that is, a violation of (*) when A is of form B →C would require a violation for one of the less complex sentences B and C.So the induction on complexity still goes through.
	1 if (Ǝτ < σ)(|B lgtVtT = 1)
	(I didn't write them that way at the start because there would be an apparent danger of assigning to Τg,Ό,σ(o) both 1 and 0.) So if t denotes the L-sentence B then
	|True(t)|g,v,σ is 1 iff (Ǝτ < σ)(|B|g,v;τ = 1), and 0 iff (Ǝτ < σ)(|B|g,v;τ = 0).
	Moreover, cardinality considerations show that there is an ordinal after which further increase in σ makes no difference. (That “closure ordinal” may depend on g and v,as well as on the underlying model M.) The desired Τg,v(“the minimal fixed point”) is the one for such sufficiently large σ. For any L+-sentence B, we take|B|g,v to simply be the value generated by this fixed point 3-extension for ‘True'.
	|True(t)|g,v = 1 iff |B|g,v = 1, and |True(t)|g,v = 0 iff |B|g,v = 0.
	Since there are only three possible values, it follows that|True(t)|g,v =1/2 iff |B|g,v = 1/2. and hence
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	From this it is clear that all we need to do to ensure that our construction yields naive truth is to ensure that the g and v we construct are transparent.
	(Iσ,A) If | A|g,v,σ ∈{0, 1} then | A|g,w,σ = |A|g,v,σ.
	§7. Fibers. The goal of this section is to construct, for each →-booster g based on M, a set RM,g of ⊲valuations (think of them as the fairly “regular” ones), and a certain privileged member vg of that set. For each fixed g based on M,I'llletFM,g be {< g,v >: v e RM,g}, and call it “the fiber attached to g”; < g,vg > will be called the “base point of the fiber”.
	21 If A is either atomic with predicate in the ground language, or of form True(t ) where t denotes
	18
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	to drop the subscript ‘ M ' for now, but it's important to remember that the fiber space, and the value space formed from it, depend on M . Everything here is model-relative; the construction will give no sense to any model-independent notion of a sentence's value.
	1 if (3S e Z)(Vw e S)(if |A|g,w = 1then 1B|g,w = 1)
	This is a legitimate definition: nothing can be assigned both 1 and 0 since if a chain contains both S1 and S2, S1Π S2 can't be empty since it must be either S1 or S2, which were required to be nonempty.22 If Z is 0, valg [Z] assigns 1/2 to every ⊲-conditional.
	Truncation Corollary for echains If S is a member of the echain Z, let ZS (the S- truncation of Z) be {S' e Z : S' C S}. Then valg[ZS] = valg[Z].
	22
	The definition doesn't really require that Z be a chain, simply that it be a collection of nonempty sets of transparent valuations such that any two members of Z have a common subset in Z . This is relevant to giving a more natural semantics in the case of vagueness, but for simplicity I'll confine myself here to chains.
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	Lemma 7.3 (Nontriviality of fiber-stages). For all g and μ, Rgμ ≠0; indeed, for all g and μ, Rgμ has a member vgμ such that (∀w ∈ Rgμ)(Vg,μl ≤K w).
	23 Details: Let Rg be the intersection of all the Rg,K. Trivially, for every κ, Rg C Rg,K; we need
	20
	It's worth making explicit the values that result. In general,
	1A⊲ B|g,v —
	1 if (∃S ∈ Zg,v)(∀w∈S)(if |A|g,w — 1 then |B|g,w — 1)
	Defining ► from ⊲ as in Section 3, |A ► B|g,v has the same 0 clause, but is 1 iff (35 e Zg,v)(Vw e 5)(|A|g,w ≤ |B|g,w).
	(*) | A ⊲ B|g,Vg =
	1 if (∀w ∈ Rg)(if |A|g,w — 1 then |B|g,w — 1) 0 if (∀w e Rg)(|A|g,w — 1 Λ|β|g,w — 0)
	and
	(**) |A ► B |g,vg =
	1if(Vw e Rg)(|A|g,w<|B|g,w)
	Also, since the w in Rg are precisely the valuations of form valg[Z] where Z is a chain of members of Rg, we also have
	| A ⊲B |g,vg =
	1 if (∀w∈Rg)(|A ⊲ B|g,w=1)
	and similarly for ► .
	THEOREM 7.5 (Regularity for fibers). For any L+ sentence A and any g, | A|g,vg — 1 iff (∀w ∈ Rg)(|A|g,w — 1),and |A|g,vg — 0 iff (∀w e Rg)(|A|g,w — 0).
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	(b) Immediate from the Regularity Theorem and the 1 clause of (*) and (**).
	Theorem 7.7 (Classical collapse for ⊲ and ►, preliminary statement). If |A v ­A|g = 1 and | B v -B|g = 1 then for all v in Rg, | A ⊲ B |g,v = |A ► =|A ⊃ B| g,v
	§8. The base space. The construction of the base space has some analogy to the construction of the fibers. But instead of relativizing the construction to a given evaluation v (which would be the analog of what we did with the fibers), we make use of the prior construction of a privileged v for each g, viz. the base point vg. We also make modifications reflecting the fact that our e -boosters are only two-valued.
	DEFINITION 8. 1 . boost[P](A e B)=
	1 if (3G∈ P)(∀g ∈ G)(if |A|g = 1then |B|g = 1)
	Obviously since all members of P and all valuations of form vg are transparent then boost[P] is transparent.
	22
	Lemma 8.3 (Nontriviality of base stages). For all a, Ja = 0; indeed, for all a, Ja has a member ga such that (Vh e Ja)(ga <K h).
	Foreach g e J, g is boost[P] forsome P e P; pickoneandcall it Pg. As with thefibers, (ii) of the Fixed Point Corollary means that we have in effect a modal-like neighborhood semantics on the base space, with the boosters in J as “worlds”: for each world g the g-neighborhoods are the members of Pg (or their supersets). For @ the sole neighborhood is J; but typical “worlds” within this neighborhood have much smaller neighborhoods, to which those worlds needn't belong.
	g(A,B)=
	1 if (3G e Pg)(Vh e G)(if |A\h = 1 then |B\h = 1)
	(I'm using g(A, B) as an alternative notation for g(A — B), to lessen the possibility of confusion with the value of A — B at g.) And so
	|A — B|g,v =
	1 if (3G e Pg)(Vh e G)(if |A|h = 1 then |B|ft = 1)
	(Note that in the last two conjuncts of the 0 clause we have v, not vg.)
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	only is @ reflexive but P@ is {J},
	|A →B|@ =
	1 if (∀h e J)(if |∀|h = 1 then |B|h = 1) 0if|A|@ = 1 and |B|@ = 0
	Observation on Modus Ponens:
	(1) : If (∀h ∈ J)(|A|h = 1) then |A→ B|@ is 1 iff (∀h ∈ J)(|B |h = 1).
	24 So one way to define the classicality predicate mentioned near the end of Section 4 is as
	24
	Part 3. VALIDITY AND LAWS
	This is not quite my ultimately preferred view. on philosophical grounds I prefer to think of validity as a computationally tractable relation, in the sense that for any recursively enumerable
	25
	25

	25
	25

	It will be convenient to introduce a notion I'll call M-validity (Γ \=M B):
	set Γ of formulas, the set of formulas B that validly follow from it should also be recursively
	26
	It is easily seen that both modus ponens for ⊲ and modus ponens for→ are valid (M -valid for each M ), in the sense of (M -)validity I've defined. I remarked before that in any naive truth theory meeting extremely minimal conditions, we can't have condi­tionals that obey both modus ponens and unrestricted conditional proof. Indeed, Curry's paradox shows that modus ponens requires failure of conditional proof even in the special case when there are no side premises (or none beyond the arithmetic used to cons
	Proposition 9.2 (Limited →-Introduction).
	26 Suppose that not (Γ, B ⊨ univ C); then for some h ∈ J , | Γ |h = |B|ft = 1 and |C |h < 1. {{h}} is an -chain; let g be the →-booster it generates. Then |T →Γ|g = 1 and |B→ C|g < 1.
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	A ⊨ - A →C. But let A be the sentence K * from the end of Section 8, and C be ⊥|K*|@ = 1, but there are g ∈J for which |­K*|g = 1, so |­K* ⊥|@ isn't 1 (indeed,
	is not universally valid. (Both this rule and modus  do preserve universal validity, but that is much weaker.27)
	27 We don't even have the meta-rule that if Γ ⊨ univ B and Γ ⊨ univ B→ C then Γ ⊨ univ C, when Γ ≠ 0. Taking Γ to be {B}, that would yield the meta-rule that if B = univ B→ C
	28
	(Super-validity obviously entails universal validity, and for single sentences, super-validity
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	I turn now to structural rules, reasoning by cases, and the collapse of both conditionals to
	Classical collapse: All conditionals are equivalent to d in classical contexts, that is, on the assumption of strong excluded middle for their antecedents and consequents.
	30
	Especially in the case of (1), there are related results that derive weaker equivalences
	31
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	occurrences of A that are not in the scope of any ⊲, then ⊨M,s XA ↔↔XB; it is established by noting that =M,s A ↔↔ B corresponds to A and B having the same value at all base nodes (what we might call base-equivalence), and proving (in analogy to the proof of the equivalence theorem) that base-equivalence is pre­served under embedding of all connectives other than ⊲
	32
	It shows a “near-redundancy” of‘T ⊲’: it is eliminable when not in the scope of a ► or ⊲. More generally,
	| A ⊲ B|h =
	1 if for all v in Rh , | B|h,v = 1 0 if for all v in Rh, | B|h,v=0
	But by regularity that just means that for all h e Y ,IA ⊲ B |h = |B |h .So | (A ⊲ B) ↔↔ B|g = 1. □
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	(c) and (d) These are equivalent, by Limited →-Introduction and L1b. To establish (c): For any g, suppose |A|g = 1 and |(A Λ C) ⊲ B|g = 1. By the second equality, for every v in Rg, if |A Λ C|g,v = 1 then |B|g,v = 1. By the first equality and Regularity, | A|g,v = 1 for all v in Rg. From these we get that for every v in Rg if |C|g,v = 1 then |B|g,v = 1, and so |C ⊲ B|g = 1. □
	34
	(c) If |­(A ⊃ B')|@ = 1, then since @ is in the only member of P@, @(A, B) < 1. Also | A|@ = 1 and |B|@ = 0. These things together give that | A B |@ = 0. □
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	(if |B|h = 1 then |C|h = 1) then (∀h e G)(if |A|h = 1 then |C|h = 1); so for any g ∈J, if g(B, C) = 1 then g(A, C) = 1. Now for any g ∈J , if |A C|g = 0 then g(A, C)<1, |A|g = 1, and |C|g = 0; so by what's been shown we have g(B, C) < 1, |B|g = 1, and |C|g = 0; so |B C|g = 0. □
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	(b) and (c): For any g e J , suppose |T (A >> B)|g = 1. (Recall that the definitions
	28 To get analogs of this with in place of ⊲ one needs to beef up the antecedent ­(A >>C) to
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	(b) Suppose that for every t (in L+M), |A(t)→ B(t)|@ = 1. Then for each t, and
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	The proofs are rather trivial given the results already established, but just to be explicit:
	29 Some failures, such as “If x is A, then if all A are B then x is B ”, can be handled by the special convention that in English, “If A then if B then C ” is usually read as meaning “If A and B then C ”. (There seems to be no natural such convention that would have avoided the problem posed by restricted quantification.)
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	theory;30 indeed, I'd expect, and hope for, variations that give rise to clear improvements in the laws. But what about the prospects for a radically different approach?
	30 One variation that will be obvious to those familiar with Field (2008) is to use revision-theoretic constructions for the fibers and/or the base-space, modeled after the fixed point constructions used here. For instance, to construct the fiber for a given →-booster g, we'd let
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	sentences,31 and CK is incompatible with that since it requires the Curry sentence to behave like the Liar sentence. (III) must go because it requires
	31 It suffices to show that both lead to [(A→B) Λ­ (A→B)]→⊥ , since by (CONTRAP)
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	in print for logics that come closest to CK (though they don't come very close at all) are my own in (2008) and several much earlier ones of Ross Brady's, most of which are discussed in his (2006). Neither he nor I claimed to give an account of account of restricted quantification; and if one had defined the restricted universal quantifier in terms of the conditionals he or I provided, the accounts would have been ludicrous.
	the task at hand, since it's been known for many years that a naive truth theory is consistent even in Lukasiewicz continuum valued logic (see White, 1979); the problem is that in that logic the theory isn't ω-consistent, that is, consistent with a standard model of syntax (see Restall, 1992), which also prevents a consistent naive satisfaction theory with the usual compositional rules for the quantifiers (see Hajek et al., 2000). It was partly to prevent such pathologies that I insisted on a conservativene
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	Part of the problem with using either the logic of Field (2008) or any of the main logics of Brady (2006) to define restricted quantification is that in them, the single-conditional is contraposable (as it is in CK). If one is intent on a single-conditional approach, one might do better exploring logics where it isn't (even in rule form). Andrew Bacon (2013) has recently made considerable progress along these lines: he uses a novel construction based on the Banach Fixed Point Theorem. (He presents the const
	35 Of course as he notes, one can easily define a contraposable conditional from a noncontraposable one; but the new one may not validate the laws that made the old one attractive.
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	(I use ⊲ rather than ► for their second conditional since they take it to be noncontra­posable.) So far very much like the account in this paper. However, though the second conditional in Beall et al. (2006) obeys the >-weakening rule and hence delivers the rule form of (II), it doesn't satisfy the stronger >-weakening axiom and so does not deliver the full (II).
	37 He didn't because the account in Beall et al (2006) hasn't actually been shown consistent with naive truth theory, it is merely conjectured to be.
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	both A and not B”to“AllA are B”.38 (Orrather: a paraconsistent dialetheist can keep these inferences only by disallowing modus ponens for ⊲ and thus disallowing the inference from “All A are B” and “c is A”to“c is B”.) These limitations are fairly obvious, and presumably anyone with an independent commitment to accepting both the Liar sentence and its negation will be prepared to swallow them. But they strike me as a heavy intuitive cost, and this seems to me to give a reason to prefer rejecting both the Li
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	38 There is no obvious bar to a paraconsistentist accepting (II) and (V), as long as she denies the




