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1 Introduction
According to the Naive Theory of Properties, for every predicate Θ(χ) there is a 
corresponding property λχΘ(χ). Moreover, this property λχΘ(χ) is instantiated 
by an object o if and only if Θ(ο). More generally, the Naive Theory involves 
the following "Naive Comprehension Schema":

(NC) Vui...Vun3y[Property(y)AVx(x instantiates y Θ(χ, ui...un))].

This Naive Theory of Properties has many virtues, but it seems to have been 
shattered by (the property version of) Russell's Paradox.

"Seems to" have been shattered? There's no doubt that it was shattered, if 
we presuppose full classical logic. Let us use the symbol ‘S’ to mean "instan­
tiates". The Russell Paradox involves the Russell property R corresponding to 
the predicate ‘does not instantiate itself’. So according to the Naive Theory, 
Vx[x S R —(x S x)]. Therefore in particular,

(*) R s R —(R S R).

But (*) is classically inconsistent.
There are two solution routes (routes for modifying the Naive Theory) within 

classical logic. The first says that for certain predicates, such as ‘does not 
instantiate itself’, there is no corresponding property. The second says that 
there is one, but it isn’t instantiated by what you might think: there are either 
(i) cases where an object o has the property λχΘ(χ) even though —Θ(ο), or (ii) 
cases where an object o doesn’t have the property λχΘ(χ) even though Θ(ο). 
In particular, when Θ(χ) is ‘does not instantiate itself’, the Russell property 
is either of sort (i) or sort (ii). This second solution route subdivides into 
three variants. One variant commits itself to a solution of type (i): the Russell

*This is a preprint of an article accepted for publication in The Philosophical Quarterly,
Jan. 2004, °c Basil Blackwell.
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property instantiates itself, but nonetheless has the property of not instantiating 
itself. A second variant commits itself to a solution of type (ii): the Russell 
property doesn't instantiate itself, but nonetheless fails to have the property 
of not instantiating itself. A third variant hedges: it says that the Russell 
property is either of sort (i) or sort (ii), but refuses to say which.

These four classical theories—the three variants that admit the existence of 
the Russell property and the one that denies it—all seem to me problematic. 
(In the prima facie analogous case of sets, I take the approach that denies the 
existence of "the Russell set" to be quite unproblematic. But I take properties 
to be very different from sets in this regard, for reasons to be discussed in the 
final section.) In my view we need a different sort of solution route, and it must 
inevitably involve a weakening of classical logic. It is the aim of this paper to 
provide one.

The idea of weakening logic to avoid the Russell Paradox is not new, but the 
proposal presented here is unlike many in that it saves the full Naive Compre­
hension Schema in the form stated above: it saves it not only from the Russell 
Paradox (which is relatively easy) but from far more virulent forms of paradox 
(such as the Curry Paradox and its many extensions). I know of no other ways 
of saving Naive Comprehension in as strong or as natural a logic.

2 Background
If we are going to weaken classical logic to get around the Russell paradox (along 
with others), it is useful to look at how it is that (*) leads to contradiction in 
classical logic; that way, we'll know which steps in the argument for contradiction
might be denied. (Actually, one well-known approach accepts contradictions,
in the sense of assertions of form A Λ —A, and while I do not favor it, I want 
my initial discussion to recognize it as an alternative. For that reason, let 
me stipulate that a theory is to be called inconsistent if it implies, not just a 
contradiction in the above sense, but anything at all: the existence of Santa 
Claus, the omniscience of George Bush about matters of quantum field theory, 
you name it. So even those who accept "contradictions" won't want their 
theory to be "inconsistent", in the way I am now using these terms.) With this 
terminology in mind, here are the main steps in an obvious argument that (*) 
is inconsistent:

(1) (*) and R G R together imply the contradiction

(**) (R G R) Λ —(R G R),

since the first conjunct is one of the premises and the second conjunct follows 
by modus ponens.

(2) Analogously, (*) and —(R G R) together imply (**).
(3) So by disjunction elimination, (*) and (R G R) V — (R G R) together 

imply the contradiction (**).
But (4) (R G R) V —(R G R) is a logical truth (law of excluded middle), 

so (*) all by itself implies the contradiction (**).
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(5) Anything that implies a contradiction implies anything whatever, 
and hence is inconsistent in the most obviously odious sense of the term.

That's the argument,1 and obviously several different ways of restricting 
classical logic so as to avoid it are possible. (I take it that the argument that 
(NC) implies (*) involves nothing in the least controversial, so that anyone who 
wants to retain the Naive Comprehension will certainly want to retain (*).) I 
will simply state my preferred approach, without arguing that it is best: in 
my view, the most appealing way to weaken classical logic so as to evade the 
argument that (*) leads to inconsistency is to restrict the law of excluded middle, 
thereby undermining step (4). Disjunction elimination can be retained (even 
in the strong sense used in Step (3), i.e. allowing side formulas). So can "the 
odiousness of contradictions" assumed in Step (5).2

Unfortunately, restricting excluded middle falls far short of giving an ade­
quate theory. In the first place, though restricting the law of excluded middle 
blocks the above argument for the inconsistency of R G R — (R G R), it
is by no means obvious that there is a satisfactory logic without unrestricted 
excluded middle in which that biconditional can be maintained. It is still less 
obvious that there is a satisfactory such logic in which the full Naive Theory of 
Properties can be maintained. Let me explain.

First of all, the most obvious ways to deal with the paradoxes in logics with­
out excluded middle (e.g. the set-theoretic adaptation of the Kleene version of 
Kripke's [4] "fixed point" approach to the semantic paradoxes)3 do not vindicate 
(NC), nor do they even vindicate its weak consequence (*). The reason is that 
they don't contain an appropriate conditional (or biconditional).

Indeed, the main issues involved in showing the consistency of the Naive

1 I've been a bit sloppy about use and mention, since I've defined R to be a property, 
but appear to have spoken of a sentence (*) that contains it. There are several ways this 
could be made right. One is to work in a language where we have a property-abstraction 
operator, so that we could name R in the language; then that name would be used in (*). A 
second is to replace the ‘R' in (*) with a free variable y : then the argument in the text goes
over to an argument that formulas of form y Ε y θ — (y Ε y) imply contradictions, so their
existential generalizations do too, and (NC) implies such an existential generalization. A
third involves the introduction of a convention of "parameterized formulas": pairs of formulas 
and assignments of objects to their free variables. Then (*) is simply a convenient notation 
for the pair of ‘y Ε y θ —(y Ε y)' and an assignment of R to ‘y', and what appears in the 
text is a literally correct derivation involving parameterized formulas. Do things however you 
like.

2 Of course, if you can evade the argument in a logic £1 that contains the "odiousness of 
contradictions" rule A A —A = B, you can equally evade it in a logic £2 just like £1 but which 
is "paraconsistent" in that the rule A A —A = B is dropped. But since classical laws like 
excluded middle that are absent from £1 will be absent from £2 as well, this has no evident 
advantages. What is potentially more interesting is using a paraconsistent logic in which 
we keep laws absent from £1, such as excluded middle. For some skeptical remarks on the 
possibility of getting anything like Naive Property Theory in an interesting paraconsistent 
logic of this type, see [1].

3 Such an adaptation of the Kleene variant of Kripke's approach is in effect given in Maddy 
[5], as a theory of proper classes. I will discuss the use of the theory to be given in this paper 
in connection with proper classes in the final section. In my opinion, the presence of (NC) 
is not only needed for property theory generally, it also makes for a more adequate theory of 
proper classes.
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Theory center on the problem of finding an adequate treatment of the (And 
hence the ^: I'll assume that A B means (A B) Λ (B A).) Even if our 
goal were limited to the consistent assertion of the biconditional (*), that would 
pretty much rule out our defining A B in terms of the other connectives in 
the manner familiar from classical logic, viz. —A V B. For on that "material 
conditional" reading of (*) amounts to

[—(R G R) V —(R G R)] Λ [——(R G R) V (R G R)].
Assuming distributivity and a few other simple laws, this is equivalent to a 
disjunction of the classical inconsistencies (R G R) Λ —(R G R) and —(R G 
R) Λ ——(R G R). If we assume double-negation elimination, that's in effect 
just the simple contradiction (R G R) Λ —(R G R); and even if double-negation 
elimination isn't assumed, a disjunction of contradictions seems just as inconsis­
tent as a single contradiction. So if we put aside the paraconsistent approaches 
mentioned in note 3, it's clear that we cannot in general interpret A B as 
—AVB if we want to retain even (*). And on the paraconsistent approaches the 
"material conditional" reading of seems inappropriate on different grounds: 
that reading invalidates modus ponens.4

The first problem about getting a decent conditional, then, is licensing the 
assertion of (*). But there are plenty of "logics of ^" that avoid that problem 
while still being inadequate to the Naive Theory, for the full Comprehension 
Schema (NC) is not consistently assertable in them. Indeed, many of these 
logics fail to handle a close analog of Russell's paradox due to Curry. The 
problem is this: (NC) implies the existence of a Curry property K, for which 
Vx[x G K (x G x ±)], where ± is any absurdity you like. So K G K
(K G K ±); that is,

(i) K G K (K G K ^±)
and

(ii) (K G K ^±) K G K.
But in many logics of we have the contraction rule A (A B) = A B,
on which (i) implies

(i*) K G K ^±.
But this with (ii) leads to K G K by modus ponens; and another application of 
modus ponens leads from that and (i*) to ±.

Unless we restrict modus ponens (and it turns out a very drastic restriction 
of it would be required), we need to restrict the contraction rule. This requires 
further restrictions on the logic as well. For instance, given that we're keeping 
modus ponens in the form A, A B = B, we certainly have A, A (A B) = 
B simply by using modus ponens twice; so to prevent contraction, we certainly 
can't have the generalized ^-introduction meta-rule that allows passage from 
r,A = B to Γ = A B. Indeed, even the weaker version which allows the

4 Although it is important not to interpret —— as the material conditional, the theory that I 
will advocate does posit a close relation between the two: while (A —— B) θ (—A V B) is not a 
logical truth, it is a logical consequence of the premises A V —A and B V —B. In other words, 
it is only in the context of a breakdown in the law of excluded middle that the divergence 
between the — and the material conditional emerges.

4



inference only when Γ is empty should be given up: it is the obvious culprit in 
an alternative form of the Curry paradox.

It turns out, though, that the difficulty in finding an adequate treatment of
the ‘^' is not insuperable, and that the Naive Comprehension Principle (NC) 
can be maintained; indeed, it can be maintained in a logic that, though not 
containing excluded middle or the contraction rule, is not altogether unnatural 
or hopelessly weak.5 The aim of this paper is to show this.6 Whether the 
theory should still count as "naive" when the logic is altered in this way is a 
question I leave to the reader.

It is worth emphasizing that though the law of excluded middle will need 
restriction, there is no need to give it up entirely: it can be retained in various 
restricted circumstances. For instance, the notion of property is normally em­
ployed in connection with a "base language" L that does not talk of properties; 
we then expand L to a language L+ that allows for properties, including but 
not limited to properties of things talked about in L. (It is not limited to 
properties of things talked about in L because it will also include properties of 
properties: indeed, it is some of these that give rise to the apparent paradoxes.) 
It is within the ground language L that most of mathematics, physics, and so 
forth takes place; and the theory advocated here does not require any limitation 
of excluded middle in these domains, because as long as we restrict our quan­
tifiers to the domain of the ground language we can retain full classical logic. 
We can also retain full classical logic in connection with those special ("rank 
1") properties that are explicitly limited so as to apply to non-properties; and 
to those special ("rank 2") properties that are explicitly limited so as to apply 
to non-properties and rank 1 properties; and so on. Where excluded middle 
cannot be assumed is only in connection with certain properties that do not 
appear anywhere in such a rank hierarchy, like the Russell Property and the 
Curry Property (though for other such properties, e.g. those whose complement 
appears in the rank hierarchy, excluded middle is also unproblematic). Even 
for the "problematic" properties, there is no need to give up excluded middle 
for claims about property identity; it is only when it comes to claims about 
instantiation of problematic properties that excluded middle will not be able to 
be assumed in general.

I don't know if the theory here can be adapted to a theory of "naive sets", by 
adding an axiom or rule of extensionality; I will have a bit to say about this in the 
final section, including a discussion of why the matter is much less pressing for 
sets than for properties. But if it is possible to develop a theory of naive sets, it 
seems unlikely that we would be able to maintain excluded middle for identities 
between naive sets (e.g., between the empty set and {x|x = x Λ K G K}, where 
K is the "Curry set", defined in analogy with the Curry property). Because of

5 For instance, the conditional obeys contraposition in the strong form = (—A —— — B) —— 
(B —— A). Also when = A θ B and Cb results from Ca by subsituting B for one or 
more occurrences of A, then = Ca θ Cb ; so (NC) yields that y Ε λχθ(χ) is everywhere 
intersubstitutable with Θ^), even within the scope of a conditional.

6 The approach I'll be giving is an adaptation of the approach to the semantic paradoxes 
developed in [2].
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this, a "naive set theory", if possible at all, would have an importantly different 
character from the naive property theory about to be developed.

3 TheGoal
I've said I want a consistent naive theory of properties, but actually what I 
want is a bit stronger than mere consistency. It's time to start being a bit more 
precise.

Let L be any first order language with identity. Since I won't want to
identify A B with —A V B, it is necessary to assume that is a primitive 
connective, along with —, Λ and/or V, and V and/or 3. And to avoid annoying 
complications about how to extend function symbols when we add to the ontol­
ogy, I'll assume that L contains no function symbols (except perhaps for 0-place 
ones, i.e. individual constants). L can be taken to be a language for mathe­
matics, or physics, or whatever you like other than properties. (So it shouldn't 
contain the terms ‘Property' or ‘S’ in the senses to be introduced. If it contains 
these terms in other senses—e.g., ‘S' for membership among the iterative sets of 
standard set theory—then imagine these replaced by other terms.)

Let L+ result from L by adding a new 1-place predicate ‘Property' and a 
new 2-place predicate ‘S' meaning ‘instantiates'. For any formula A of L,let 
AL be the formula of L+ obtained from A by restricting all bound occurrences 
of any variable z by the condition ‘—Property(z)'. Let T be any theory in the 
language L. "Naive Property Theory over T "is the theory T + that consists of 
the following non-logical axioms:

(I) AL, for any A that is a closure of a formula that follows from T
(II) VxVy[x S y Property(y)]
(III) Vui...Vun3y[Property(y)AVx(x S y Θ(χ, ui...un))], where Θ(χ, ui...un)

is any formula of L+ in which y is not free.
((III) is just (NC).) Then a minimal goal is to show that in a suitable logic, 
the theory T + consisting of (I)-(III) is always consistent as long as T itself is 
consistent. Note that if T is itself a classical theory, i.e. is closed under classical 
consequence, then "Naive Property Theory over T " effectively keeps classical 
logic among sentences of form AL, even though its official logic is weaker: for if 
Ai,...,An are formulas of L that classically entail B, then Ai Λ A2 Λ ...An B 
is in T, so [(Vui,..., Uk)(Ai Λ A2 Λ ...An B)]L is in T+, and this is the same as 
(Vui, ...,uk)[—Property(ui) Λ ... Λ —Property(uk) (AL Λ A2 Λ ...Λ% BL)].

The minimal goal is to show that T+ is consistent whenever T is, but I 
actually want something slightly stronger: I want to introduce a kind of multi­
valued model for L+ (infinite-valued, in fact), and then prove

(G) For each classical model M of L, there is at least one model 
M+ of L+ that validates (II) and (III) and has M as its reduct;

where to say that M is the reduct of M + means roughly that when you restrict 
the domain of M+ to the things that don't satisfy ‘Property' (and forget about 
the assignments to ‘Property' and to ‘S') then what you are left with is just
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M .7 Since the connectives of L+ will reduce to their classical counterparts on 
the reduct, the fact that M is the reduct of M + will guarantee the validity of 
Axiom Schema (I); so if M satisfies T, M+ satisfies T +.

There is good reason why (G) says ‘at least one' rather than ‘exactly one': 
we should expect that most or all models of T + can be extended to models 
that contain new properties but leave the property-less reduct unchanged. The 
proof that I will give yields the minimal M + for a given M , but extensions of 
the model with the same reduct could easily be given.

I will prove (G) in a classical set-theoretic metalanguage, so anyone who is 
willing to accept classical set-theory should be able to accept the coherence of 
the non-classical property theory to be introduced.

4 The Semantic Framework
The goal just enunciated calls for developing a model-theoretic semantics for L+ 

in a classical set-theoretic metalanguage. The semantics will be multi-valued: in 
addition to (analogs of) the usual two truth values there will be others, infinitely 
many in fact.

4.1 The Space of Values
My approach to achieving the goal is an extension of the Kripke-style approach 
previously mentioned, but it needs to be substantially more complicated because 
of the need for a reasonable conditional.

One complication has to do with method of proof: the new conditional is 
not "monotonic" in the sense of Kripke, which means that we cannot make 
do merely with the sort of fixed point argument that is central to his approach 
(though such a fixed point argument will play an important role in this approach 
too).

The other complication is that the semantic framework itself should be gen­
eralized: whereas Kripke uses a 3-valued semantics, I will use a model theory in
which sentences take on values in a subspace W Π of the set F Π of functions from
Pred(n) to {0, 2, 1}, where Π is an initial ordinal (ordinal with no predecessor 
of the same cardinality) that is greater than ω, and where Pred(n) is the set of 
its predecessors.8 (I don't fix on a particular value of Π at this point, because 
I will later impose further minimum size requirements on it.)

7 The reason for the ‘roughly' in the definition of ‘reduct' is that M is a classical model, 
whereas M + will be multi-valued; so its reduct will have to assign objects that live in the 
larger space of values. Nonetheless, the space of values will contain two rather special ones, 
to be denoted 1 and 0,andwecantake‘A has value 1 in M+' and‘A has value 0 in M +'to
correspond to ‘A is true in M 'and‘A is false in M ', when A is in L. The reduct of M + won't 
strictly be M , but it will be the {0,1}-valued model that corresponds to M in the obvious 
way.

8 When I presented the analog of this for the semantic paradoxes in [2], I did not explicitly 
introduce this new space of semantic values (since I hadn't yet thought of the matter in that 
way); but the ideas seem to me clearer with this space of values made explicit.
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Which subset of FΠ do I choose as my Wn? If ρ is a non-zero ordinal less 
than Π, call a member f of FΠ ρ- cyclic if for all β and σ for which ρ · β + σ < Π, 
f (ρ · β + σ) = f (σ); and call it cyclic if there is a non-zero ρ less than Π such 
that it is ρ-cyclic. Call it regular if in addition to being cyclic, it satisfies the 
condition that it is either one of the constant functions 0 and 1 (which map 
everything into 0 or map everything into 1) or else maps 0 into 2. Then WΠ 

consists of the regular functions from Pred(n) to {0, 2, 1}. (Once we've found a 
suitable method of assigning values in WΠ to sentences, then the valid inferences 
among sentences will be taken to be those inferences that are guaranteed to 
preserve the value 1.)

A few properties of WΠ are worth noting.

• It has a natural partial ordering: f g iff (Va < n)(f(α) < g(a)). 
The ordering has a minimum 0 and maximum 1. Andtheorderingis 
not total: for instance, the constant function 1 is incomparable with the 
function that has value 1 at limit ordinals, 0 at odd ordinals, and 1 at 
even successors.

• For each f G Wn define fF to be the function for which fF (a) = 1 — f (a) 
for each a. Then fF will be in Wn too. Moreover, the operation F is a 
symmetry that switches 0 with 1, leaving the constant function 1 fixed.

• For any nonempty subset S of WΠ that has cardinality less than that of 
Π, define f (S) to be the function whose value at each α is the minimum 
of {f(a)|a G S}, and g(S) to be the function that analogously gives the 
pointwise maximum. Then f (S) and g(S) are in WΠ;9 and clearly, they 
are the meet and join of S with respect to the partial ordering.

• For any S, g(S) is 1 only if 1 G S; that holds because if 1 G/ S,then 
f(0) < 1 for each f in S. This is important: it will ensure that the logic 
that results will obey the meta-rules of V-elimination and 3-elimination.

Observe also that if f (0) is 1 and f G Wn, then f assumes the value 1 

arbitrarily late, viz. at all right-multiples of ρf. (By ρf, I mean the smallest 
ρ for which f is ρ-cyclic.) Also, note that for any f and g in Wn, there are 
ρ < Π such that both f and g are ρ-cyclic: any common right-multiple of ρf 

and ρg will be one. One consequence of this is that if there are β < Π for which 
f (β) < #(β) (alternatively, f (β) < #(β)), then for any α < Π, there are β in the 
open interval from α to Π for which f (β) < #(β) (alternatively, f (β) < #(β)). 
And that implies that

• f g is equivalent to the prima facie weaker claim that there is an α (less 
than Π) such that for all β greater than α (and less than Π), f (β) < #(β).

9 Fo r min(S ), this is trivial if one of the members of S is 0 or if S is {1 }. Otherwise,
consider the nonempty subset of members of Wn that are of type (ii), and let ps be the 
smallest ordinal that is a right-multiple of all the Pf for f Ε S; by the cardinality restriction 
on S, this is less than Π (and at least 2). Moreover, all members of S ps-cycle, so min(S) 
Ps-cycles (and s° Pmm(S) < Ps)·
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Similarly, if we define a (quite strong) strict partial ordering by f g iff 
either (f = 0 and g ° 2) or (f 2 and g = 1), then

• f g is equivalent to the prima facie weaker claim that there is an 
α (less than Π) such that for all β greater than α (and less than Π), 
f(β) <g(β).

For if the consequent of this holds, then pick β to be a common right-multiple 
of pf and pg greater than α; since f (β) < g(β), at least one of f (β) and g(e) 
isn't 2 , so at least one of f (0) and g(0) isn't 1, so at least one of f and g is in 
{0,1}; and the rest is obvious.

The results just sketched are the keys to proving a final feature of the space 
WΠ, that it is that it is closed under the following operation =^ :

(f =^ g)(0) is
1 if for some β < Π, and any γ such that β < γ < Π, f (γ) < Ρ(γ); 
0 if for some β < Π, and any γ such that β < γ < Π, f (γ) > Ρ(γ);
2 otherwise;

and if α > 0, (f =^ g)(a) is
1 if for some β < a, and any γ such that β < γ < α, f (γ) < Ρ(γ); 
0 if for some β < a, and any γ such that β < γ < α, f (γ) > Ρ(γ);
2 otherwise.

(The value 2 can occur only at 0 and at limits.) Note that the exceptional treat­
ment of 0 in effect turns the domain of the functions in WΠ into a "transfinite 
circle", in which 0 is identified with Π. And we clearly have

• f =^ g is 1 if and only if f g; and f =^ g is 0 if and only if f g.

Why is WΠ closed under =^ ? Since 1 and 0 are in WΠ, we need only
show that when neither f g nor f g then f =^ g is regular. Let
p be the smallest non-zero ordinal for which both f and g p-cycle, and let p*

be p · ω. I claim that f =^ g is p*-cyclic, that is, for any σ < p*, the 
value of (f =^ g)(p* · δ + σ) is independent of δ; and that when σ is 0, 
(f =^ g)(p* · δ + σ) is 2. Case 1: σ > 0. Then (f =^ g)(p* · δ + σ) = 1 
iff (Ξβ < p* · δ + σ)(Ψγ)(β < γ < p* · δ + σ D f(γ) < g(^) iff (Ξβ)(Ρ* · δ < β < 
p* ·δ+σ)(Ψγ)(β < γ < p* ·δ+σ D f (γ) < g^)); but that's independent of δ since 
f and g are (p-cyclic and hence) p*-cyclic. Similarly for the δ-independence of 
the condition for (f =^ g)(p* · δ + σ) =0. Case 2: σ = 0. We need that 
(f =^ g)(p* · δ) = 1 for all δ. The reason is that for any α < p* · δ (i.e. 
α < p · (ω · δ)), there is an Z such that α < p · Z < p · (Z +1) < p · (ω · δ); and 
(since neither f g nor f g ) there are bound to be β in the interval from 
p· Z to p · (Z +1) (lower bound included) where f (β) > Ρ(β) and others where
f (β) < 5(β), so (f g)(p* · δ) = 1.

The operation =^ just specified has some rather nice properties. I've 
already noted the conditions under which it takes the values 1 and 0.In 
addition:

• When f and g are in {0,1} then f =^ g is identical to the value of the 
material conditional, g{fF,g}.
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Since I will be using =^ to evaluate the conditional, this will mean that the 
conditional reduces to the material conditional when excluded middle is assumed 
for antecedent and consequent.

It is beyond the present scope to investigate the laws governing =^ (though 
this is important since it will determine which inferences involving are valid); 
for that, see [2].

It's worth making explicit that if f g is defined in the obvious way (as 
f {f g,g f}), then if α > 0, (f g)(«) is

1 if for some β < a, and any γ such that β < γ < α, f (γ) = g(y); 
0 if for some β < a, and any γ such that β < γ < α, f (γ) = g(y);
2 otherwise.

(And analogously for (f g)(0): use Π in place of α on the right hand side.)

4.2 Wn-Models
Having noted these features of the space W Π of values, we can easily define 
models based on this space: Wn-models. I will take a Wn-model for a language 
to consist of a domain D of cardinality less than Π, an assignment to each 
individual constant c of a member den(c) of D, and an assignment to each n- 
place predicate of a function p* from Dn to Wn (where Dn is the set of n-tuples 
of members of D). A WΠ-valuation for a language will consist of a Wn-model 
together with a function s assigning objects in the domain of the model to the 
variables of the language. Given any valuation with assignment function s and 
any term t (individual constant or variable), let dens (t) be den(t) if t is an 
individual constant, s(t) if t is a variable.

Given a Wn-valuation with assignment function s, we assign values in WΠ 
to formulas as follows:

||p(t1, ...tn)||s is p* (dens (t1) , ..., dens(tn)), which in the future I'll also
write as pd*ens(t1),...,dens(tn);

ll-A||s is (||A||s)F;
||AΛ B||s is f{||A||s, ||B||s};
||A vB||s is g{||A||s, ||B||s};
||VxA||s is f {||A||so | s0 differs from s except perhaps in what is assigned 

to the variable x};
||3xA||s is g{||A||so | s0 differs from s except perhaps in what is assigned 

to the variable x};
||A B||s is =^ (||A||s, ||B||,).

Note that for the quantifier clause to make sense in general, it is essential that 
the domain of quantification have lower cardinality than Π. But this is no real 
restriction, it's simply that if you want to consider models of large cardinality 
you have to choose a large value of Π. (Recall the goal, (G): we want a strong 
form of consistency in which for any classical starting model M for the base 
language L, there is a non-classical model M + in L+ that has M as its reduct. 
There is no reason why the space of values used for M+ can't depend on the 
cardinality of M.) So I will stipulate that the non-classical model will be a
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W Π -model for some initial ordinal Π of cardinality greater than that of M (as 
well as being greater than ω). The M + shortly to be described will have a 
cardinality that is the maximum of the cardinalities of M and of ω , so this 
restriction will suffice for the quantifier clause to be well-defined.

I've written the valuation rules for ordinary formulas, but in the future I will 
adopt the convention of using parameterized formulas in which we combine the 
effect of the formula and the assignment function in our notation by plugging a 
metalinguistic name for an object assigned to a variable in for free occurrences 
of the variable in the displayed formula; that will allow me to drop the subscript 
s, and simplify the appearance of other clauses. For instance, the clauses for 
atomic formulas and universal quantifications become

||p(oi, ...on)|| is the function fp,oi,...o„ that takes any α intop* (01,..., on); 
||VxA|| is the function f {||A(o)|| | o G D}.

(Sometimes I'll make the parameters explicit, e.g.
For all o1, ..., on, ||VxA(o1,..., on)|| is the function f{||A(o,o1,...,on)|| |

o G D},
but the absence of explicit parameters should not be taken to imply that there 
are no parameters in the formula.)

5 A Model for Naive Property Theory
5.1 The Basics
The next step is to specify the particular model to be used for naive property 
theory. Recall that I'm imagining that we are given a model M for the base 
language L. We can assume without real loss of generality that |M | (the domain 
of M ) doesn't contain formulas of L+, or n-tuples that include such formulas; 
for if the domain does contain such things, we can replace it with an isomorphic 
copy that doesn't. With this done, let E0 be |M |. For each natural number 
k,wedefine a set Ek+1 of ersatz properties of level k +1.Amemberof 
Ek+1 isatripleconsistingofaformulaofL+, a distinguished variable of L+, 
and a function that assigns a member of U{Ej |j < k} to each free variable 
of L+ other than the distinguished one, meeting the condition that if k>0 
then at least one element of Ek is assigned.10 If Θ(χ, ui,..., un) is the formula 
and x the distinguished variable and o1,...,on the objects assigned to u1, ..., un 

respectively, I'll use the notation λχθ(χ, oi,..., on) for the ersatz property. Let 
E be the union of all the Ek for k > 1, and let |M +| be |M|UE. (The cardinality 
of |M+| is thus the same as that of |M|, when |M| is infinite, and is Ko when 
M is finite.) The only terms of L+ are the individual constants of L;theyget 
the same values in M+ as in M.

I hope it's clear that the fact that I'm taking the items in the domain to be 
constructed out of linguistic items does not commit me to viewing properties as 
linguistic constructions; the point of the model is simply to give a strong form

10The exception for k =0is needed only for formulas that contain no free variables beyond 
the distinguished one.
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of consistency proof (i.e., to satisfy Goal (G)), and this is the most convenient 
way to do it.

Putting aside the unimportant issue of the nature of the entities in the 
domain, the domain does have a very special feature: all the properties in the 
model are ultimately generated (in an obvious sense I won't bother to make 
precise) from the entities in the ground model by the vocabulary of the ground 
model; so that the model contains the minimal number of properties that are 
possible, given the ground model. It is useful to consider such a special model 
for doing the consistency proof for naive property theory, but not all models of 
naive property theory will have this form (as is obvious simply from the fact 
that if we were to add new predicates to the ground model before starting the
construction, we would generate new properties).

To complete the specification of M + we must specify an appropriate Π, and 
then assign to each n-place atomic predicate p an "Wn-extension": a function 
p* that takes n-tuples of members of |M +| into WΠ. I have already said that I 
would take Π to be the initial ordinal for a cardinal greater than the cardinality 
of |M+|; a further stipulation will become necessary, but let us wait on that. As 
for the predicates, much of what we must say is obvious. If p is a predicate in
L other than ‘=', and o1, .... , on are in M+, we let po*1,... ,on be 1 if ho1, .... , oni is
in the M-extension of p, 0 otherwise. (So it's 0 if any of the oi are in E.) We 
let Propertyo* be 1 when o is in E, 0 otherwise. And we let =o1,o2 be 1 when o1 

isthesameobjectaso2, and 0 otherwise. These stipulations obviously suffice 
to make M the reduct of M+. Because of this, and the fact that the function 
assigned to each connective including the conditional reduces to its classical 
counterpart when confined to the set {0,1}, we get (by an obvious induction 
on complexity) that for any sentence A of L (or any formula A of L and any 
assignment function s that assigns only objects in |M|), the value of AL in M+ 

(relative to s) will be 1 when the value of A (relative to s)inM is 1, and will 
be 0 when the value of A (relative to s)inM is 0. Each instance of Axiom 
Schema (I) therefore gets value 1.

This leaves only ‘S’. One desideratum should obviously be that when 02 

is in the ground model |M|, then S*1 O2 is 0. This will suffice for giving value 
1 to Axiom (II).

The difficult matter, of course, is figuring out how to complete the specifi­
cation of the Wn-extension of 'S', in such a way as to validate Axiom Schema 
(III). This will be the subject of the next four subsections.

5.2 The Difficulty: How Do ‘S’ and ‘^’ Interact?
The main problem in constructing an interpretation for membership statements 
is due to the presence in the language of the conditional Just to get
a feeling for what might be involved here, consider a very simple case: the 
ordinary Curry property K. This is λχ(χ S x ^^), where ± is some sentence 
with value 0, say 3y(y = y). What function fK^K should serve as SK k, and 
hence as ||K S K||, i.e. ||K S λχ(χ S x ^)||? Since we want (III) to be 
valid, that had better be the same as ||K S K ±||. That is, we want the
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function fKGK to be identical to the function fKGK =^ θ·
But how do we get that to be the case? The first thing we want to know is, 

what is fK^K(0)? The rules tell us that it is
1 if (Ξβ < Π)(νγ)[β < γ < Π D fKeK(γ) = 0];
0 if (Ξβ < Π)(νγ)[β < γ < Π D fKeK(γ) > 0];
2 otherwise.

Evidently, we can't know the value of fK- κ(0) until we know the values of 
fKe K(α) for higher α. But finding out the values of fKGK(α) for each higher α 
seems to require already having the values for lower α. We seem to be involved 
in a vicious circle.

In fact, there is an easy way to find out what function fK^K is. First, 
fKe K (0) can't be 1; for the only function in WΠ that has value 1 at 0 is 1, and 
so fKGK(1) would have to be 1; but fKGK(1) can only be 1 if fKGK(0) is 0. 
By a similar argument, fK-K(0) can't be 0. It follows that fK- κ(0) must be 
1, and from that it is easy to successively obtain all the other values. (For the 
record, the value is | at 0 and all limit ordinals, 0 at odd ordinals, and 1 at 
even successors.)

Other cases will not be so simple. For instance, consider a more general class 
of Curry-like properties, the properties of form λχ(χ G x A(x; οχ,..., on)). 
Letting Q be the property for a specific choice of A and of o1, ..., on , we want 
|Q G Q| to have the same value as Q G Q A(Q; oi,...,on)). But A can 
be a formula of arbitrary complexity, itself containing G and ^, and the Ois 
can themselves be "odd" properties of various sorts. It isn't obvious how the 
reasoning that works for the simple Curry sentence will work more generally.

In many specific cases, actually, it is also easy to come up with a consistent 
value for the sentences involved; often a unique one, though in cases like the 
parameterized sentence ‘λχ(χ G x) G λχ(χ G x)' it is far from unique unless 
further constraints are added. But it's one thing to figure out what the value 
would have to be in a lot of individual cases, another to come up with a general 
proofthat values always can be consistently assigned. And it's still another thing 
to specify a method that determines a unique value for any formula relative 
to any assignment function. How are we to do these further things? The 
reasoning about the valuation of K G K suggests that for α>0 we might be 
able to figure out the function Za that assigns to each parameterized formula 
B the value ||Β||(α), if only we had the functions Ze for β < α; but getting 
the process going requires that we know Z0, which includes the assignment to 
parameterized B in which includes arbitrarily high embeddings of the in 
either the formula itself or the formulas involved in generating the parameters; 
this will depend on the Ze for the very high values of β. The main problem, 
then, is to somehow break into the "transfinite circle".

I propose that we proceed by successive approximations. The main idea is 
to start outside of the space WΠ, so that we can treat the in a way that 
mimics the behavior of the =^ at ordinal values greater than 0 but abandons 
its rigid requirement about stage 0. We will start out by assigning the "0th 
stage" of the evaluation of all conditionals artificially, and see what the later 
stages must be like as a result of this; it will turn out that by continuing far
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enough we will inevitably be led to an appropriate assignment Z0 of values for 
the initial stage.

This must be combined with another idea, which is basically the one Kripke 
employed in his construction: we need to use a fixed point argument to construct
the assignment to ‘S’ by approximations when the assignment to ‘^’ is given. 
And we need to somehow do these two approximation processes together; this 
is where most of the difficulties arise.

5.3 Constructing the Valuation of ‘S': First Steps
OK, let’s get down to business. The construction will assign values in the set 
{0, 2, 1} to formulas relative to two ordinal parameters α and σ (as well as to 
an assignment of values to the variables in the formula). α will initially be 
unrestricted; σ will be restricted to being no greater than Ω, the initial ordinal 
of the cardinality that immediately succeeds that of |M+|. (Forget about Π for 
now; we will ultimately take it to be at least Ω, but it is not yet in the picture.) 
We order pairs ha, σ) lexicographically, that is, ha, σ) A ha0, σ0} iff either a < a0 
or both a = a0 and σ < σ0; the reason for demanding that σ is restricted is 
so that this defines a genuine sequence. We will mostly be interested in the 
subsequence of pairs of form ha,Ω); values of σ smaller than Ω serve simply as 
auxiliaries toward producing the values at Ω. I will call the value of a sentence 
at the pair ha,Ω) its "value at stage a", and will often drop the Ω from the 
notation.

I now proceed to assign a value in the set {0, 2, 1} to each formula in L+ 

relative to any choice of a, σ and s (the latter being a function assigning objects 
to the variables); except that as mentioned before I will drop the reference to 
s by understanding the formulas to be parameterized. I will use the single­
bar notation |Α|α,σ instead of the double-bar notation ||A|| used before, to 
emphasize that the value space is different. Eventually I will use the two- 
parameter sequence |Α|α,σ to recover ||A||. (Just so you know where we’re 
headed, the definition will be that ||A|| is the function whose value at a < Π is 
|Α|Δ+α,Ω; where Δ and Π are ordinals to be specified later. These ordinals will 
not depend on the particular A; and for all A, |Α|δ+π,ω = |Α|δ,Ω· Moreover, 
for all A, |Α|δ,Ω is 1 iff for all a > Δ, |Α|α,Ω is 1; and analogously for 0, though 
not necessarily for 2. These are the main conditions needed to ensure that 
||A|| meets the regularity conditions required for membership in the space W Π, 
which in turn ensures that we get a reasonable logic.)

The single-bar assignment goes as follows:
1. |oi = 02^,0- is 1 if oi = 02; 0 otherwise.
2. If p is an atomic predicate of L other than ‘=’, |p(oi,..., on)|α,σ is 1 

if hoi, ..., on) is in the extension of p in M; 0 otherwise. (So it’s 0 if any of the 
oi are in E.)

3. property^^^ is 1 if o is in E; 0 otherwise.
4. |oi S 02\α,σ is 0 if 02 is in the original domain |M|. Otherwise, 02 is 

of form λχΘ(χΡι,...Ρη) for some specific formula Θ and objects bi,...,bn. In 
that case, |oi S 02^,0- is
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1 if for some ρ < σ, |Θ(ο, bi...bn)la,p = 1;
0 if for some ρ < σ, |Θ(ο, bi...bn)la,p = 0;
2 otherwise.

5. |-Α|α,σ is 1 - |Α|α,σ
6. |A Λ Β|α,σ is min{|A|a,a, |Β|α,σ}

7. |A V Β\α,σ is max{|A|a,a , |Β|α,σ }
8. |VxA(x)|a,a is min{|A(o)|α,σ | o' G |M+|}
9. |3xA(x)|a,a is max{|A(o)|a^|o' G |M+|}

10. |A Β|α,σ is
1 if for some β < a, and any γ such that β < γ < α, |Α|α,Ω <

|Β|α,Ω;
0 if for some β < α, and any γ such that β < γ < α, |Α|α,Ω >

|Β|α,Ω;
2 otherwise.

Note that when α is held fixed, the values of all atomic predications not 
involving 'G ' (including those involving ‘=' and ‘Property'), and of all con­
ditionals, is completely independent of σ: in the case of conditionals, that is 
because of the use of the specific ordinal Ω on the right hand side of 10. That 
means that for each fixed value of α we can perform the fixed point construc­
tion of [4]. (We perform it "transfinitely many times", once for each α.) More 
fully, for each α the construction is monotonic in σ: as σ increases with fixed 
a, the only possible switches in value are from 2 to 0 and from 2 to 1. So by 
the standard fixed-point argument, the construction must reach a fixed point at 
some ordinal of cardinality no greater than that of the domain; that is, at some 
ordinal less than Ω. And that means that we get the following consequence of 
4:

(FP) For all α and all o and all Θ and all b1...bn,
|o G λχθ(χ, δι...δ„)|α,Ω = |Θ(θ, δι...δη)|α,Ω.

And by the rule for the biconditional that follows from 10 and 6 (together with 
the fact that an increase in σ stops having any effect by the time we've reached 
Ω) then implies that for any α> 1 (and any o, Θ and bi...bn),

|o G λχΘ(χ, δν..δ„) Θ(ο, δχ...δ„)|α,Ω = 1;
so (dropping Ω from the notation),

(FP-Cor1) For any Θ and α > 1,
|Vui...Vun3zVx[x G z Θ(χ,ui...un)]|a = 1.

(FP-Cor1) looks superficially like the (III) that we require, but in fact it 
falls far short of it, for it says nothing about the double-bar semantic values 
that we need to guarantee a reasonable logic: nothing about regular functions 
from Pred(n) to {0, 1, 1}. To do better, we need to explore what happens as 
we go to higher and higher values of α. That is the goal of the next subsection.

Before proceding to that, I note a substitutivity result:
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(FP-Cor2) If A is any parameterized formula, and A* results 
from it by replacing an occurrence of y G λχθ(χ, oi...on) by an 
occurrence of Θ^, oi...on), then for each α, |Α|α = |A* |α.

It's worth emphasizing that this holds even when the substitution is inside the 
scope of an ^. The proof (whose details I leave to the reader) is an induction 
on complexity, with a subinduction on α to handle the conditionals and the 
identity claims. (It is essential that the assignment of values to conditionals 
for α =0didn't give conditionals different values when they differ by such a 
substitution; but it clearly didn't do that, since it gave all conditionals value 
1.)

5.4 The Fundamental Theorem
Is there a way to get from our single-bar semantic values relative to levels α to 
double-bar semantic values in a space W Π? A naive thought might be to define 
||oi G 021| as the function that maps each α into |oi G 02|α. But it should be 
obvious that this doesn't work: it doesn't meet the regularity condition that we 
need. (It does work in a few simple cases, like fK^K, but not in general.) The 
fact that all conditionals have value 2 at α = 0 is the most obvious indication 
of this.

But something like it will work: I will show that there are certain ordinals
Δ, which I will call acceptable ordinals, with some nice properties. It turns out 
that if Δ is any acceptable ordinal and Π is any sufficiently larger acceptable 
ordinal that is also initial (so that it is equal to Δ + Π), then we can use this Π 
for our value space WΠ, and we can define ||oi G 021| as the function that maps 
each α < Π into |oi G 02|Δ+α. The conditions on acceptability will guarantee 
that the functions are regular. It will also turn out that even for complex 
formulas, ||A|| is the function that maps each α < Π into |Α|Δ+α. And this 
will guarantee all of the laws that we need.11

The definition of acceptability that is easiest to use will require some prelim­
inary explanation. To that end, I introduce a transfinite sequence of functions 
Ha. (These are the "single bar analogs of" the Za that I informally mentioned 
in Section 5.2.) Ha is defined as the function that assigns to each parameter­
ized formula A the value |A| α determined by the single-bar valuation rules. If 
v = Ha, I say that α represents v. And if Ha = He I say that α is equivalent to 
β. I will make use of an intuitively obvious lemma that the reader can easily 
prove by induction on γ:

Lemma: If α is equivalent to β then for any γ, α + γ is equivalent 
to β + γ .

Now let FINAL be the set of functions v that are represented arbitrarily 
late, i.e. such that (Ψα)(Ξβ > α)(ν = He).

11In what follows, I use a slightly different definition of acceptability than in [2], though it 
is equivalent to the one there; the difference simplifies the proof somewhat.
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Prop. 1: FINAL = 0.

Proof: If it were empty, then for each function v from SENT to {0, 2, 1}, 
there would be an αν such that (Vβ > αν)(v = He). Let θ be the supremum of 
all the αν. Then for each function v from SENT to {0,1, 1}, v = Ηθ. Since Ηθ 

itself is such a function, this is a contradiction. ¥

Call an ordinal γ ultimate if it represents some v in FINAL; that is, if 
(να)(Ξβ > α)(Ηγ = He).

Prop. 2: If α is ultimate and α < β then β is ultimate.

Proof: If α < β, then for some δ, β = α + δ. Suppose α is ultimate. Then 
for any μ, there is an ημ > μ which is equivalent to α. But then β, i.e. α + δ, 
is equivalent to ημ + δ by the Lemma, and ημ + δ > μ; so β is ultimate. ¥

Call a parameterized formula A ultimately good if for every ultimate α, 
|A|a = 1; ultimately bad if for every ultimate α, |A|a = 0; and ultimately 
indeterminate if it is neither ultimately good nor ultimately bad. If Γ is a class 
of parameterized formulas, call an ordinal δ correct for Γ if

(ULT) For any A G Γ, |A|5 = 1 iff A is ultimately good, and |A|5 = 0 iff A 
is ultimately bad.
(It follows that |A|5 = 2 iff A is ultimately indeterminate. Also, if Γ is closed 
under negation then the clause for 0 follows from the clause for 1.) And call 
an ordinal acceptable if it is universally correct, that is, correct for the set of all 
parameterized formulas. (So if two ordinals are acceptable, they are equivalent, 
i.e. they assign the same values to every parameterized formula.)

Prop. 3: If δ is ultimate, then the following suffices for it to 
be correct for Γ:

for all A G Γ, if A is ultimately indeterminate then |A|d = 2·

Proof: Since δ is ultimate, anything that is ultimately good or ultimately 
bad has the right value at δ, so only the ultimately indeterminate A have a 
chance of being treated incorrectly. ¥

I now proceed to show that there are acceptable ordinals; indeed, arbitrarily 
large ones. Start with any ultimate ordinal τ , however large. Then every 
member of FINAL is represented by some ordinal > τ ; and since FINAL is a set 
rather than a proper class, and τ is ultimate, there must be a ρ such that τ + ρ 
is equivalent to τ and every member of FINAL is represented in the interval 
[τ, τ + ρ). Finally, let Δ be τ + ρ · ω. I will show that Δ is acceptable.

Prop. 4: For any n, every member of FINAL is represented in the 
interval [τ + ρ · n, τ+ ρ · (n +1)).

Proof: From the fact that τ + ρ is equivalent to τ, a trivial induction yields 
that for any finite n, τ + ρ · n is equivalent to τ; so for any finite n and any 
α < ρ, τ + ρ· n + α is equivalent to τ + α. So anything represented in the interval 
[τ,τ+ ρ) is represented in [τ + ρ · n, τ + ρ · (n +1)). ¥
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Prop. 5: Δ is correct with respect to all conditionals.

Proof: Since Δ is ultimate, any ultimately good A has value 1 at Δ, and 
any ultimately bad A has value 0 at Δ. It remains to prove the converses.

Suppose |B C|δ = 1. Then for some α < τ + ρ · ω, we have that (Vβ G 
[α, τ + ρ · ω))(|B|β < |C|e)· Since α < τ + ρ · ω, there must be an n such that 
α < τ + ρ · n. So (Ve G [τ + ρ · n, τ + ρ · ω))(|Β|β < |C|e). But by Prop. 4, every 
member of FINAL is represented in [τ + ρ · n, τ + ρ · ω); so for every ultimate 
ordinal β, |B|e < |C|e. It follows by the valuation rules that for every ultimate 
β, |B C|e = 1; that is, B C is ultimately good. Similarly, if |B C^ = 0 
then B C is ultimately bad. ¥

Fundamental Theorem: Δ is acceptable.

Proof: By Prop. 3, it suffices to show that if A is ultimately indeterminate 
then |Α|δ = 2. Making the mini-stages explicit (and recalling that for any α, if 
a sentence has value 1 at (α, Ω} then it has that value at all (α, σ}), the claim 
to be proved is that (VA)(Vct)(if ||A|| = 1 then |Α|δ σ = 1). Or reversing the 
quantifiers, that (Va)(VA)(if ||A|| = 1 then |Α|δ σ = 2)■ Suppose this fails; let 
σ0 be the smallest ordinal at which it fails. We get a contradiction by proving 
by induction on the complexity of A that

(*) (VA)( if A is ultimately indeterminate then |Α|δ σ = 1).

If A is atomic with predicate other than 'G', then A is not ultimately inde­
terminate, so the claim is vacuous. Similarly if A is o1 G o2 where o2 is not in
E.

Suppose A is 01 G 02 where 02 G E. Then 02 is {χ|θ(χ, bi,..., bn)}, for some 
Θ(χ, bi,..., bn). So if A is ultimately indeterminate, 3x[x = o Λ Θ(χ, bi...bn)] 
must be too, since it has the same value as A at each stage. So by choice of 
σο, |3x[x = o Λ Θ(χ, bi...bn)] |Δ,σ = 1 for all σ < σο. But then by the valuation 
rules, |o1 G θ2|Δ,σο = 1.

If A is a conditional, then by the valuation rules |Α|δ σ is |Α|δ ω, i.e. |Α|δ, 
which (when A is ultimately indeterminate) is 1 by Prop. 5.

The other cases use the claim that (*) holds for simpler sentences, and are 
fairly routine. E.g., if A is VxA, then if A is ultimately indeterminate, there is a 
to such that A(to/x) is ultimately indeterminate and for no t is A(t/x) ultimately 
bad. But for any t for which A(t/x) is ultimately indeterminate, including to, 
the induction hypothesis gives that |A(to/x)^ σ0 = 2; and for any t for which 
A(t/x) is ultimately good, |A(t/x)^ ω is 1 and so |A(t/x)  ̂σ G {2, 1}. So by 
the valuation rules for V, |VxA^ σ = 1. ¥
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5.5 The Valuation of ‘ ' Concluded
We are now ready to choose the value of Π for our space W Π , and to choose a
Wn-extension for ‘S’.

Recall that the acceptable ordinal Δ just constructed was chosen to be bigger 
than an arbitrarily big τ ; so the fundamental theorem gives that acceptable 
ordinals occur arbitrarily late. Let Δο be the first acceptable ordinal and 
Δο + δ be the second; then an ordinal is acceptable iff it is of form Δο + δ · β.

If I hadn’t already imposed stringent requirements on the space of semantic 
values (so as to be able to develop the semantics generally with as little bother as 
possible), I could now simply let G*1O2 be the function that maps each α < δ into 
|oi S θ2|Δ0+α, and let the set of semantic values be the set of such functions 
for the different pairs ho1,o2i. But given that I have imposed the stringent 
requirements, this won’t work: I need an acceptable Δο + Π for which Π is an 
initial ordinal > Ω. Also, if I don’t insist that Π is strictly greater than δ I will 
need to prove that for each parameterized formula A there is a Pa smaller than 
δ such that the function |Α|Δ0+α is PA-cyclic; I imagine that’s so, but to avoid 
taking the trouble to prove it, I will construct Π to be strictly greater than δ, 
so that we can use δ as a common cycle for all the A.12

So let Π be any initial ordinal that is greater than Δο + δ and no less than 
Ω. Since Π is initial, and greater than Δο + δ, it is identical to Δο + δ · Π, so 
it is acceptable. And (since Δο + Π is also just Π), we can carry out the above 
idea using Π in place of δ:

(E) For each σι and σ2, G*1O2 is the function that assigns to 
each ordinal α < Π the value |oi S θ2|Δ0+α.

Then every value ||oi S 021| is δ-cyclic.
The last thing that must be shown, to show that (E) does in fact succeed in 

assigning a Wn-extension to ‘S’ for the Π recently chosen, is that each ||oi S 021| 
is regular. But that’s clear: if it maps 0 into either 0 or 1, then |oi S 02|δ0 is 
0 or 1, so by acceptability, 0i S 02 is either ultimately bad or ultimately good, 
and so |oi S θ2|Δ0+α is either 0 for all α or 1 for all α; so ||oi S 021| is either 0 
or 1.

So we have a Wn-model. All that now remains of the consistency proof 
is to verify that the model validates Axiom Schema (III). This requires the 
following:

Theorem: For each parameterized formula A, ||A|| is the function 
that assigns to each ordinal α < Π the value |Α|Δ0+α·

Proof: by induction on the complexity ofA. It’s true by stipulation for mem­
bership statements, and trivial for other atomic statements; and the clauses for

12 Actually I could avoid a separate stipulation that Δο + δ < Π by proving this from the
stipulation that Π is an initial ordinal, and that is an obvious consequence of what I assume
to be a fact, that δ<Δ0. But again, there’s no need to take the trouble to prove this when 
an alternative stipulation of the value of Π will obviate the need.
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quantifiers and for connectives other than are completely transparent because 
the functions assigned these connectives in Wn-models behave pointwise just 
like the corresponding connectives behave in the single-bar assignments. This 
is true for too, except for the behavior at 0. So all we need to verify is the 
following:

If ||A|| and ||B|| are the functions that assign to each ordinal α<Π 
the values |Α|Δ0+α and |Β|Δ0+α respectively, then ||A B||(0) 
assigns the value |A Β|δ0 .

But ||A B||(0) is by stipulation (||A|| =^ ||B||)(0); that is,
1 if for some β < Π, and any γ such that β < γ < Π, ||Α||(γ) <

||b||(y);
0 if for some β < Π, and any γ such that β < γ < Π, ||Α||(γ) >

||b||(y);
2 otherwise.

But ||Α||(γ) is by hypothesis |Α|δ0+υ, and likewise for B, so these conditions 
are just the same as the corresponding conditions for |A Β|δ0+π. In other 
words, we've shown that ||A B||(0) is |A Β|δ0+Π. And since acceptable 
ordinals are equivalent, that is just |A Β|δ0, as required. ¥

Corollary: Each instance of Axiom Schema (III) gets value 1.

Proof: We need that for any o, oi,..., on, ||o G λχθ(χ, oi...on)|| = ||Θ(ο, oi...on)||.
But by the Theorem, this reduces to the claim that for each α, |o G λχθ(χ, θι...οη)|Δ0+α = 
|Θ(ο, θι...οη)|Δ0+α, and that is just a special case of the fixed point result (FP) 
proved in Section 5.3. ¥

6 Satisfaction, Sets, and Proper Classes
Without too much trouble, the above construction could be generalized from 
properties to (non-extensional) n-place relations, for each natural number n. 
(Properties are the n = 1 case. We can include propositions as the n =0 
case.) Thereisaweakwaytodothisandastrongway. Theweakwayis 
to introduce, for each n, the unary predicate ‘Reln ' (‘is an n-ary relation') and 
the (n + 1)-place predicate ‘Gn' (with xi,...,xn Gn y meaning "y is an n-place 
relation and hxi,...,xni instantiates it"); also a single unary predicate ‘REL' 
which each of the ‘Reln ' entail (we need this for restricting the variables to 
things that aren't relations). The strong way, which requires that the ground 
language L and ground theory T be adequate to arithmetic and the theory of 
finite sequences, is to introduce a single binary predicate ‘Rel(n, z)' meaning 
that z is an n-place relation (‘REL' can obviously then be defined ) , and a 
single binary predicate ‘G', with ‘G (s, z)' meaning "for some n, z is an n-place 
relation and s is an n-place sequence that instantiates z". The details of both 
the weak and the strong generalization are, as far as I can see, routine. We can
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also easily build into the language an abstraction symbol that, when applied
to any formula θ(χι,... xn,ui...Uk) of the language and any k-tuple of entities 
oi...ok, denotes the n-place relation λχι, ...,χηθ(χι,..., xn,oi...ok); and we can 
introduce a predicate that applies only to such canonical relations. (In the 
model we used to prove consistency, all the relations were canonical, but this 
needn't be so in general.)

From such a generalized theory in the strong form, we could also obtain a 
consistent theory of expressions and of their satisfaction, a theory that validates 
the naive schema

(xi, ...xn} satisfies ΓΘ(νχ,..., vn)π Θ(χι,..., xn).
The basic idea is obvious: identify the formulas of a language that contains 
a satisfaction predicate with canonical relations, and identify satisfaction with 
instantiation. Satisfaction claims thus would get values in the space WΠ, and 
excluded middle could not in general be assumed for them. It would be worth 
being more explicit about the details were it not for the fact that such a theory 
of satisfaction was given more directly in [2].

A more difficult question is whether we can generalize the above construction 
to a naive theory of extensional relations; or, to stick to the n = 1 case, a naive 
theory of sets. Here there do seem to be some difficulties. The matter is a 
bit complicated because there are several different ways one might propose to 
treat identity, and there are questions about whether one wants certain laws 
involving it to hold in full conditional form or only in the form of rules. But 
the main problem seems to be independent of these issues, for it doesn't involve 
identity: the issue is, how can we secure the rule

Set(x) Λ Set(y) Λ Vw(w G x w G y) = Vz(x G z y G z),
and preferably also the "reverse negated" rule

—Vz(x G z y G z) = —Vw(w G x w G y), 
without any weakening of the Naive Comprehension Schema (III)? The natural 
way to try to secure these rules is to modify the treatment of ‘G ' so that what 
the fixed point construction ensures is not the (FP) of Section 5.3, but rather, 
(FP) only for the special case α =0, supplemented with

(FP-Mod) For all α>0 and all o and all Θ and all b1...bn,
|o G λχΘ(χ, bi...bn)la = |3x[x ξ o Λ Θ(χ, δχ...δη)]|α,

where ‘x ξ y' abbreviates ‘[—Set(x) Λx = y] V [Set(x) ΛSet(y) ΛVz(z G x z G 
y)]'. (Notice that |x ξ y|a depends only on the single-bar values of membership 
claims for β<α, given the valuation rules for the biconditional; so there is no 
threat of circularity.) If we introduce the double-bar values on the basis of the 
single-bar ones as before, this would yield

||o G λχΘ(χ, bi...bn)|| = ||3x[x ξ o Λ Θ(χ, bi...bn)]||.
Since ||o ξ o|| =1 for any o (given that ξ was defined via rather than the 
material biconditional, and that the single-bar value at α =0drops out by the 
time you get to the double-bar values), this would in turn yield

||o G λχΘ(χ, bi...bn)|| ° ||Θ(ο,bi...bn)]||, 
which would ensure the validity of
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(A) Θ(ο, ui...un) o G λχθ(χ, ui...un).
We also get a limited converse, viz. the rule

(Bi) o G λχθ(χ, ui...un) = Θ(ο, ui...un).
But this is a signifi cant lessening of naive comprehension: indeed not only do
we not get the validity of the conditional

o G λχθ(χ, ui...un) Θ(ο, ui...un),
we don't even get the "reverse negation" of (Bi), viz.

(B2) —Θ(θ, ui...un) = o G λχθ(χ, Ui...un).13
This does not seem to me enough to count as Naive Set Theory. I don't rule
out that we might be able to do better by a more clever construction, but it 
doesn't look easy.

But why do we need a naive theory of sets (or other extensional relations)
anyway? We have a very nice non-naive theory of sets, namely the Zermelo- 
Fraenkel theory; and it can be extended to a naive theory of extensional relations 
either artificially, by defining extensional relations within it by the usual trick,
or by a notationally messy but conceptually obvious generalization of ZF that 
treats multiplace extensional relations autonomously. (Formulations of ZF
in terms of a relation of "having no greater rank than" greatly facilitate this 
generalization.)

It is true that the absence of proper classes in ZF is sometimes awkward.
It is also true that adding proper classes in the usual ways (either predica­
tive classes as in Godel-Bernays, or impredicative ones as in Morse-Kelley) is 
conceptually unsettling: in each case (and especially in the more convenient 
Morse-Kelley case) they "look too much like just another level of sets", and 
the fact that there is no entity that captures the extension of predicates true of 
proper classes suggests the introduction of still further entities ("super-classes" 
that can have proper classes as members), and so on ad infinitum. Butoncewe 
have properties (and non-extensional relations more generally), this difficulty is 
overcome: properties can serve the function that proper classes have tradition­
ally served. The rules they obey are so different from the rules for iterative sets 
(for instance, they can apply to themselves) that there is no danger of their ap­
pearing as "just another level of sets". And since every predicate of properties 
itself has a corresponding property, there is no fear that the motivation for the 
introduction of properties will also motivate the introduction of further entities 
("super-properties").14

Of course, in standard proper class theories, proper classes are extensional; 
whereas properties are not. Does this show that the properties won't serve 
the purposes that proper classes have been used for? No. I doubt that 
extensionality among proper classes plays much role anyway, but without getting

13For a counterexample, let 01 be {w|w Ξ w}, 02 be {w|w Ξ w Λ K G K} (where K is the 
Curry set), and 03 be {w| —(w Ξ w)}; and let θ(χ, 03) be ‘x Ξ 03'. ||—Θ(θι,03)|| = 1; but
||01 / λχθ(χ, 03)|| is 1 — g{||0 Ξ 01 Λ θ(0, 03)||}, which is 1 — ||02 Ξ 01 Λ θ(02,03)||, i.e.

1 — ||02 Ξ 01 Λ 02 Ξ 03)||. But 02 Ξ 01 has the value K G K —— > and 02 Ξ 03 has the 
value K G K —-X; and both assume value 2; at limit ordinals, so ||02 Ξ 01 Λ 02 Ξ 03) || is not
0,so ||01 / λχθ(χ,03)|| is not 1.

14The general philosophical view here is quite similar to that in [5], though the theory of 
properties on offer here is much stronger because of the presence of a serious conditional.
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into that, one could always use the surrogate ξ as a "pseudo-identity" among 
properties that is bound to be adequate in all traditional applications of proper 
classes; and an extensionality law stated in terms of ξ rather than = is trivially 
true. Of course, ξ is very bad at imitating identity among properties generally: 
if it weren't, the problem of getting an extensional analog of naive property 
theory would be easy. But when we confine our attention to those properties 
that correspond to the proper classes of Godel-Bernays or Morse-Kelley—in both 
cases, properties that hold only of things that aren't themselves properties but 
rather are sets— then ξ is a very good surrogate for identity: for instance, 
over this restricted domain, excluded middle and all the usual substitutivity 
principles hold of ξ. Consequently, we have a guarantee that properties will 
serve all the traditional purposes of proper classes (even in the impredicative 
Morse-Kelley theory).

My claim, then, is (i) that if we have a naive theory of properties in the 
background, we have all the advantages of proper classes without the need of 
any "set-like entities" beyond ordinary sets; (ii) that given this naive theory 
of properties, ordinary iterative set theory (ZF) is a highly satisfactory theory; 
and (iii) there is no obvious need for any additional theory of "naive sets".

But if there is no need of a naive theory of sets, why is there a need for a 
naive theory of properties, and for a naive theory of satisfaction? Was this 
paper a wasted effort?

In fact, the case of properties (on at least one conception of them) and of 
satisfaction are totally different from the case of sets. For the way we solve 
the paradoxes of naive set theory in ZF is to deny the existence of the alleged 
set: for instance, there simply is no set of all sets that don't have themselves 
as members. The analogous paradox in the case of the theory of satisfaction 
involves the expression ‘is not true of itself', and if we were to try to solve the 
paradox on strictly analogous lines we would have to deny the existence of the 
expression! That would be absurd: after all, I just exhibited the expression. 
We could of course say "Sure, there's an expression ‘is not true of itself', but 
it doesn't have the features one would naively think it has, such as being true 
of just those things that are true of themselves". This would be admitting 
that the expression exists, but denying the naive satisfaction theory. That is 
certainly a possible way to go, but it isn't at all like the solution in the ZF case. 
There are reasons why I don't think it is a good way to go: see [3]. But without 
getting into that here, let me simply say that the cost of violating such schemas 
is high, and is quite unlike anything that is done in ZF (where we deny the 
existence of the set, instead of saying that it exists but has different members 
than you might have thought).

The case of properties is slightly more complicated, because there is I believe 
more than one notion of property. There is, first, the notion of natural property, 
as discussed for instance in [6]. HerewedonotwantanythinglikeNaive 
Comprehension: it is central to the idea of natural properties that it is up to 
science to tell us which natural properties there are. (It is also doubtful that 
we want natural properties of natural properties. Even if we do, it seems 
likely that we should adopt a picture which is "ZF-like" in that each natural
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property has a rank and applies only to non-properties and to properties of 
lower rank. But there is no need to decide these issues here.) But in addition 
to the notion of natural property, there is also a conception of property that is 
useful in semantics. And it is the raison d'etre of such "semantically conceived 
properties" (sc-properties for short) that every meaningful open sentence (in a 
given context) corresponds to one.15 (Open sentences in the language of sc- 
properties are themselves meaningful, so they must correspond to sc-properties 
too.) Again, a ZF-like solution in which the existence of the properties is denied 
goes against the whole point of the notion.

In a theory of semantically conceived properties, then, it is unsatisfactory 
to say that for a meaningful formula Θ(χ), there is no such thing as λχθ(χ). 
It also seems unsatisfactory to say that though λχθ(χ) exists, the things that 
instantiate it are not the o for which Θ(ο). In classical logic, those are the only 
two options, but what I've shown in this paper is how to develop a third option 
in which we weaken classical logic. If we do that, then we can retain the naive 
theory of (sc-)properties, and that has an important payoff that has no analogue 
in the case ofsets. At the very least, the value of a naive set theory is unobvious; 
but the value of a naive theory of satisfaction is overwhelmingly clear, and it is 
almost as clear that we ought to want a naive theory of sc-properties if we are 
going to posit sc-properties at all.

You may still want a naive theory of sets, for whatever reason; but what 
you need is a naive theory of properties and a naive theory of satisfaction. I 
suspect that you can't get what you want; but you get what you need.
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