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Abstract

In this essay, I describe the general roles that large-scale computational 

modeling can play in modern neural science, and the ways it can contribute 

to our understanding of the human brain and its function. The essay begins 

by emphasizing that neural science is fundamentally an experimental science, 

and that its historical advances have always followed significant technological 

advances in experimental methods. Advances in computers and information 

technology of the last quarter of the 20th century constitute technological 

advances of similar importance. So next, I summarize some of the roles in neural 

science of large-scale computational modeling. As an example of these role, 

after presenting an overview of our large-scale computational model of a single 

layer of the mammalian primary visual cortex, I summarize the contributions 

that this model has made to our understanding the mechanistic operation and 

function of the primary visual cortex. Finally, I summarize the cortical oper-

ating point or state of the computational model, from which it achieves results 

consistent with biological experiments; thus, it is likely that I am describing the 

cortical operating point of the mammalian primary visual cortex itself.

Large-Scale Computational Modeling in Neural Science



THE SILVER DIALOGUES 2

DAVID W. MCLAUGHLIN

1. Introduction

The human brain is a marvelous, yet very complex, dynamical system. 

To appreciate this, just reflect on the difficult nature of its tasks and functions 

— sensual perception, cognition, memory, understanding, consciousness. But 

one becomes even more aware of the amazing nature of the human brain upon 

reflection about the ease with which it concurrently performs and synthesizes 

its multiple tasks.

The “cortex” is that part of the brain that receives, remembers, processes, 

and directs the use of sensual information. Today, we know a great deal, and yet 

we know very little, about the human brain and the mechanisms underlying 

its functions. This lack of understanding is in spite of the vast progress that 

has been made over the last century and a half, at a rate that has increased 

dramatically over the past thirty years and continues to increase today. Most 

still remains unknown.

Neural Science is fundamentally an experimental science, and the progress 

that has been made in neural science has been driven by experimental observations 

and breakthroughs in experimental techniques — ranging from and including

•	 Staining methods in anatomy, such as the Golgi method discovered 
by Camillo Golgi in 1873 and used so effectively in neural science by 
Ramon y Cajal, for which they were jointly awarded the Nobel Prize 
in Physiology or Medicine in 1906;

•	 Physiological methods, such as
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•	 Single electrode extra-cellular measurements that count voltage 
spikes of single neurons,

•	 Single electrode intra-cellular measurements that measure volt-
ages across membranes of individual cell bodies,

•	 Multi-electrode extra-cellular methods that count spike from 
collections of neurons at different spatial locations in the cortex;

•	 Optical imaging methods provide high resolution measurements 

of cortical activity across regions of the cortex, including

•	 Intrinsic imaging that does not use dyes, and thus is not toxic,

•	 Voltage sensitive dyes imaging with dyes of limited toxicity, for 
higher spatial and temporal resolution;

•	 Two photon imaging methods, with remarkable spatial-temporal 
resolution of individual synapses and their plasticity;

•	 Non-invasive imaging that allows the human brain to be imaged 
as it functions, including

•	 fMRI,
•	 MEG imaging,
•	 EEG imaging;

•	 And optical genetics.

Although an experimental science, theory and theoretical modeling can 

help neuroscientists understand, interpret, and design experiments. In fact, 

without theory to guide it, pure experimental observation would fall far short of 

understanding the cortical network — its functions and the biological mecha-

nisms by which it performs these functions.
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The basic components of the cortical network are neurons and their 

connections. Neurons are cells that are extended spatially (see Fig 1), each 

with a cell body (soma), an axon that projects to other neurons, and a complex 

dendritic arbor that receives axonal projections from other neurons. Neurons 

come in two categories, excitatory and inhibitory, that respectively excite/inhibit 

the neurons to which they project. Moreover, there are a number of distinct 

classes of excitatory neurons, and an even larger number of distinct classes of 

inhibitory neurons. These distinct classes of neurons primarily differ through 

neuronal anatomies, as discovered historically through Golgi staining – differ-

ences that presumably result in different biological functions and mechanisms 

that are just beginning to be understood. Neurons are predominantly connected 

through synapses (see Fig 2), of which there are O(103) synaptic connections 

per neuron. At a synaptic connection, increases in voltage differences between 

the inside and outside of the presynaptic neuron (actually, its axon) induce the 

Figure 1: Neurons and their components (soma, axon, dendrite). 
Left – Two photon image of two neurons; Right – staining of several neurons. Copyright held by Univer-
sity of California at Davis, and used for the sole purpose of this educational review web publication.
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In our work, we develop large-scale, biologically realistic, mathemat-

ical models of cortical regions of the mammalian brain. We emphasize that 

our models are biologically realistic — large scale and strongly constrained by 

biological measurements of the biophysics of individual neurons, their synaptic 

coupling, and their system properties. Most of our work models the mammalian 

primary visual cortex — the “front end” of the visual pathway through the visual 

Figure 2: Schematic of a synapse between 
an axon of one (projecting) neuron and 
a dendrite of one (receiving) neuron.  
Copyright held by US National Institutes of Health, 
National Institute of Aging, and used for the sole purpose 
of this educational review web publication.

release of neurotransmitters, which in turn open channels for ions to enter the 

postsynaptic cell and induce a current change in the postsynaptic dendrite. 

In this manner, chemical-electrical processes enable voltage information to 

be passed from the presynaptic neuron to the postsynaptic neuron. Thus, the 

cortical network consists in a huge number of excitatory and inhibitory neurons, 

connected through O(103) more synapses than neurons. It is this cortical network 

that so efficiently performs the vast array of functions described above.
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regions of the cortex that process visual information (See Fig 3). We then use the 

methods of modern applied mathematics to reduce these mathematical models, 

and finally study the reduced models computationally. We emphasize that we 

develop a single model (one set of parameter choices) of the primary visual cortex, 

and then use this single model to reproduce a large set of laboratory experiments.

Figure 3: The visual pathway  
(retina→LGN→V1), from D. Hubel31 

Copyright held by Scientific American Library, 
and used for the sole purpose of this educational 
review web publication.

Without large-scale computational models, theorists are restricted either 

i) to studying one (or a few) neurons in isolation from the rest of the cortical 

system, or ii) to developing highly idealized abstract representations of possible 

cortical mechanisms whose validity for the real cortical system is either too 

general to inform, or impossible to validate biologically.

With large-scale computational models, one can check if highly idealized 

abstract mechanisms can be realized concretely and explicitly in biologically 

realistic models, and one can verify that these large-scale models perform in 

manners consistent with experiment. The assumptions in the construction of the 
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model can then be systematically changed and adjusted, to further understand 

exactly how the computational model works — thus identifying for the compu-

tational model the mechanisms that underlie the model’s performance. Since the 

model is large-scale and biologically realistic, it is then reasonable to predict that 

these are the same mechanisms that underlie the real biological cortex.

In the remainder of this essay, we will:

1.	 Summarize our large-scale model of the primary visual cortex;

2.	 Briefly describe some of the biological properties of the cortical system, 
and the mechanisms that underlie these properties — including

a. The “high-conductance” high gain operating point of the cortex;

b. The sparsity of neuronal connections and its relation to the 
stability of the high-gain operating point of the visual cortex;

c. Properties of neurons within network, including

i. The linear/nonlinear characteristics of simple/complex cells;

ii. The selectivity of individual neurons in V1 to the orienta-
tion of edges in the visual stimulation;

d. Ordered versus disordered maps of cellular preferences across 
the cortical layer;

e. Space-time patterns of cortical activity, including

i. Spontaneous Cortical Activity
ii. Cortical Activity of certain optical illusions.

3. In the conclusion, we will briefly summarize the properties of the 
operating point of the model cortex.
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2. A Large-Scale Model of a Layer of the Primary Visual Cortex (V1)

We have chosen to model a part of the mammalian (rodent, cat, or 

monkey) cortex called the primary visual cortex (or area V1), which is the first 

cortical region along the visual pathway (Fig 3) to receive and process visual 

information from the retina. The primary visual cortex, as all cortical regions, is 

a layered structure of several cm2 in lateral area1, which is located near the rear 

of the skull (see Fig 4). This location at the rear of the skull makes the primary 

visual cortex accessible to physiological measurements with electrodes, as well 

as accessible to imaging procedures; thus, there is a wealth of experimental 

information about the primary visual cortex. We chose to study the visual cortex 

because of the importance of vision to mammalian perception, and the primary 

visual cortex because of the generally accepted belief that it is the first region 

along the visual pathway in which the mammalian brain processes visual infor-

mation (see Fig 3)2. Initially [Refs(ix, i, ii)] we modeled one of the “entry layers” 

of the primary visual cortex, layer 4Cα. We chose to study layer 4Cα because, 

as an entry layer, it receives visual information directly from the retina through 

the LGN, with little feedback from other layers in V1 and from higher cortical 

regions; thus, feedback in 4Cα is largely restricted to “recurrent feedback” from 

and between neurons within layer 4Cα itself. Later [Refs(iii,iv)], as we refined 

and improved our model, we extended it to an effective single layer model which 

could apply to a superficial layer (such as layer 2/3) as well as an input layer 

(such as 4Cα).
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Neurons are the fundamental components of cortical networks. Neurons 

are spatially extended cells (Fig 1), with a cell body and both axonal and dendritic 

arbors that emanate from the cell body and along which the cell sends informa-

tion (along axons) and receives information (along dendrites). Pairs of neurons 

are connected at “synapses,” which are located at the intersection of the axon 

of the presynaptic (or sending) neuron with the dendrite of the postsynaptic 

(or receiving) neuron (Fig 2). Information is carried by intense voltage pulses, 

called “spikes”, which are very short in temporal duration [O(3-5 ms)]. Spikes 

are generated at the cell body, propagate “outward” along its axon, and cause 

Figure 4: The primary visual cortex (V1 or Area 17). 
Upper left – Macaque; Upper right – Human; Lower panels – staining showing the layered structure of 
V1 for macaque. The numbering – I is superficial and VI is interior. Reproduced from Neuroscience: 
Exploring the Brain, 4th edition, Mark F. Bear, Barry W. Connors, and Michael A. Paradiso, Wolters 
Kluwer (2016). The copyright is held by Wolters Kluwer, and used here with permission for the sole 
purpose of this educational review.
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voltage information to be passed from the presynaptic axon to the postsynaptic 

dendrite through a combination of chemical and electrical processes. Actually, 

information is carried by a “spike train”, which is a temporal sequence of spikes 

generated at the cell body. Information is believed to be carried either by the 

“spike rate” of the train (the number of spikes generated by the cell body per 

second), or statistically by the inter-spike times of the spikes in the train. Because 

the spikes are so narrow, the spike train can be viewed as a binary sequence that 

describes the presence or absence of a spike as a function of time.3

As we are interested in the behavior of a cortical system containing a 

very large number of neurons, we opt to represent each neuron in a highly ideal-

ized fashion — as an “integrate and fire” point neuron. That is, we idealize each 

spatially extended neuron as a point in space, at which the voltage is governed 

by a version of Ohm’s law [voltage = current x resistance]:

C d  V=−g L(V−E L)−gE(t)[V−E E)−g I(t)[V−E I],0<t<τ1,τ1+t R <t<τ 2,etc —
  dt

V (τ1 ) = VT ; 

V (τ1 +tR) = VR

Here C denotes the capacitance of the cell’s membrane, V(t) denotes the 

voltage across the cell’s membrane, and the g’s denotes different conductances 

(inverse resistances); gL can be thought of as the membrane conductance, and 

gE(t) and gI(t) denote the temporal profiles of the excitatory and inhibitory4 

synaptic conductances that impinge upon this neuron from other neurons in 



LARGE-SCALE COMPUTATIONAL MODELING IN NEURAL SCIENCE

THE SILVER DIALOGUES 11

the cortical layer or from other regions along the visual pathway; the parameters 

EL, EE, and EI are the values of “reversal potentials” (see below); the parameter 

VT denotes the “firing threshold voltage” and VR denotes the “reset potential”, 

where VT > VR; {τj, j=1,2,3,...} denote the spike times; and tR denotes a short delay 

(spike width plus an additional delay call the “refractory period”) after which 

the voltage is reset to VR and begins evolve again.

The integrate and fire representation does not capture the temporal 

profile of the voltage spike itself; rather, it takes advantage of the following 

“approximate facts”: i) the voltage spike is very narrow in time; ii) the voltage 

spike has approximately the same temporal profile each time the neuron spikes; 

iii) there is an approximate “spiking threshold” VT which, when the neuron’s 

voltage reaches V(t=τ) = VT, the neuron fires a spike; and iv) shortly (tR = a 

few ms) after which the temporal profile of the voltage spike resets the voltage 

V(τ+tR) = VR (<VT). Thus, V(t=τ) = VT defines the “spike time τ”, after which the 

integrate and fire voltage V is “re-initialized” at VR and integrated forward in 

time until the next spike time. The increasing sequence of spike times (τ1, τ2, τ3, 

τ4, ...) label the times at which a spike occurs in the neuron’s binary spike train.

The largest error in the integrate and fire representation of the neuronal 

voltage V(t) is not the omission of the temporal profile of the voltage spike; rather, 

it is the point neuron approximation which eliminates the dendritic structure. 

Since the synapses occur at different locations along the dendritic tree, these 

locations affect the temporal dynamics of the postsynaptic potential V(t) in 
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significant manners that cannot be captured by the point neuron idealization. 

To capture these effects, a spatially extended model of the neuron is needed, and 

is missing from the simple integrate and fire representation that we currently 

use in our model.

There are a huge number of neurons in each cortical layer. For example, 

in input layer 4Cα of V1, there are O(16,000) neurons per mm2: moreover, these 

neurons come in a wide variety of types that differ in size, shape, and bio-phys-

ical characteristics. Some neurons, when they fire, excite the neurons to which 

they project to fire more rapidly, while others inhibit the firing of the neurons to 

which they project. The classification into “excitatory” or “inhibitory” is perhaps 

the most important classification of neuronal type, although there are many 

distinct classes of excitatory and of inhibitory neurons.

In the model, connections between cortical neurons in the layer of V1 

are modeled through the conductance temporal profiles as pictured in Fig 5. 

When a voltage spike from a presynaptic excitatory neuron arrives at a post 

synaptic neuron, it activates two types of receptors, called AMPA and NMDA, 

which generate conductance temporal profiles on two distinct time scales – fast 

O(5ms) for AMPA and slow O(80ms) for NMDA. Similarly, when a voltage 

spike from a presynaptic inhibitory neuron arrives at a post synaptic neuron, 

it activates two types of receptors, called GABAa and GABAb, which generate 

conductance temporal profiles on two time scales – fast O(5ms) for GABAa and 

somewhat slower for GABAb. The presence of these distinct time scales influ-

ences fundamentally the model’s response properties.
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Our large-scale computational model represents a local patch of a single 

layer of V1, of lateral area ranging from 1mm2 to 25mm2. Each neuron in this 

patch is labeled by its type (“E” for excitatory and “I” for inhibitory), and by a two 

dimensional index “j” that labels the neuron’s location within the patch. Thus, the 

model is a coupled system of 16,000/mm2 integrate and fire point neurons, 75% of 

which are excitatory and 25% inhibitory. These equations are of the form 

C d Vσ
j =−g L(Vσ

j−E L)−gjσE(t)[Vσ
j−E E)−gjσI(t)[Vσ

j−E I] —
  dt

where j = ( j1, j2), σ = (E,I), and where g jσE (t), g jσI (t) denote the conduc-

tances from excitatory-E/inhibitory-I neurons respectively that impinge upon 

the neuron at cortical position j of excitatory/inhibitory type σ. The “leak 

conductance” gL is a constant. The excitatory conductance g jσE (t) has the form

Conductance Time Course

Local:  GS(t) =       
f
        (exp[−t/σd]−exp[−t/σt])θ (t)	          —— 	

	               σd −  σ t

Long-range: G E
L (t) = (1−∧)GAMPA(t) + ∧GNMDA(t)

AMPA: ~5ms
NMDA: ~80-100msMiliseconds Tf

l

G (t −Tf
l )

Figure 5: Excitatory Conductance Time Courses: Rapid – AMPA; Slow – NDMA
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g jσE (t) = f jlgn(t)+ fE
noise(t) + SS

σE∑Kσ
j -
E

k
 ∑GAMPA(t−tl 

E,k)+ SL
σE∑Lσ

j -
E

k
 ∑GNMDA (t−tl 

E,k),
				     k	   l		     k	   l

and the inhibitory conductance g jσI (t) has the form

g jσI(t) = fI
noise(t)+SσI∑Mσ

j
I
-k

 ∑[GGABA-A(t−tl 
I,k)+GGABA-B(t−tl 

I,k)].
			      k	    l

Here fE
noise(t) and fI

noise(t) represent noise terms from excitation and inhi-

bition, respectively, each of which is modeled by a Poisson spiking process; SS
σE , 

SL
σE  and SσI  denote parameters that set the cortical-cortical coupling strengths 

of short range excitation, long range excitation, and inhibition, respectively. 

Kσ
j -
E

k
 , Lσ

j -
E

k
  and Mσ

j
I
-k represent the pattern of spatial coupling from short range 

excitatory neurons, long range excitatory neurons, and from inhibitory neurons, 

respectively. The times tl 
E,k and tl 

I,k represent the lth spike time of the kth excit-

atory/inhibitory neuron, respectively. The terms of the form G(t-tsp) represent 

the prescribed temporal profiles of the conductances for times after the spike 

time tsp. There are two excitatory conductance temporal profiles {fast [O(3ms)] 

AMPA and slow[O(80ms)] NMDA} and two inhibitory temporal profiles {fast 

[O(3-5ms)] GABA-A and slow [O(7ms)] GABA-B —

Gσ(t) =   1   (  t  )3exp(−t/τσ)θ(t)		   —  —	
	 	 6τσ     τ σ

GNMDA(t) =     1     [exp(−t/τ1) − exp(−t/τ2)]θ(t) 		    —
 	    τ1−τ 2 

Here θ(t) denotes the Heaviside function (θ (t)=1 for t>0, = 0 otherwise); 
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τ1 = 80 ms, τ2 = 2 ms, σ = AMPA, GABAa, or GABAb, τAMPA = 1 ms, τGABA-a = 1.67 

ms, and τGABA-b = 7ms.

In the remainder of this section, we describe in more detail the spatial 

and temporal profiles of the cortical-cortical conductances and the LGN drive. 

For more detailed information, we refer the reader to the published material 

[Refs 5,6,7,8].

The conductances describe the coupling between other neurons in the 

layer of V1 and from neurons in the LGN that transmit the visual information 

from the retina (and thus from the outside world). Consider the visual pathway, 

as depicted in Fig 3. It connects “visual space” where the visual stimuli occur, 

with “cortical space” where the neurons in the layer reside — a pathway through 

the retina and LGN, to V1. Each cortical neuron is driven by the summed spike 

trains of a selected small number of excitatory cells in the LGN, each one of 

which is described by a modulated Poisson process, whose modulated parameter 

is defined by a space-time linear filter convolved with the visual stimuli I(x,s),

Rk
±(t) = H{RB ± ∫∫G (t−s)A(|x k−x |) I (x , s)d2xds}  .

Here H(t) = 1, t>0; = 0 otherwise; and RB (= 20 spikes per sec) denotes 

the spontaneous firing rate of individual LGN neurons in the absence of visual 

stimulation. G(t-s) = GAMPA(t-s). A( |x k−x| )  is a circularly symmetric difference 

of Gaussians, centered in visual space on the receptive field location x k of this 

LGN neuron (that is, centered in visual space on that spatial location from which 
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the LGN neuron receives visual information). The half-width of the Gaussian 

filter captures the small spatial extent of the receptive field of the LGN neuron, 

which is circularly symmetric. The spatial scales are set so that A( |x k−x| )  is 

positive near x k and negative far from x k . The two possible signs capture the 

“on-off” or “off-on” property of LGN cells; namely, whether the cell responds 

to an increase in stimulus contrast from background at the center of the recep-

tive field, and to a decrease in stimulus contrast in the circularly symmetric 

surround (an “on LGN cell”); or vice- versa (an “off LGN cell”). The temporal 

profile G(t-s) in eq. 0.4 was derived from experimental data on LGN neurons 

[Gielen & ,van Gisbargen & Vendrik, Biol. Cybern. 40, 157-170 (1981); Benardete 

& Kaplan, Benardete’s Ph D Dissertation, Rockefeller Univ, New York (1994)].

LGN cells, with their circularly symmetric receptive fields, respond to 

sharp edges in the visual patterns in the same way, irrespective of the orien-

tation of these edges. This is in contrast to neurons in V1, which have recep-

tive fields which are considerably larger than the receptive fields of the LGN 

neurons, and which respond preferentially to particular orientations of edges 

within the visual stimuli. That individual V1 neurons respond preferentially to 

specific orientations of stimuli, which differ from neuron to neuron, and thus 

enable V1 neurons to serve of “orientation detectors of edges in visual scenes”, 

was discovered in 1959 by David Hubel and Torsten Wiesel9 10 (for which they 

were awarded the Nobel prize in 1981). Later it was established that each layer 

of V1 was tiled by an organized pattern of orientation preference, with each 
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“tile” of size O(0.5 mm x 0.5mm), and that these organized patterns of orien-

tation preference extend as “orientation columns” throughout the depth of the 

multiple cortical layers which comprise V1. (See Fig 6 for the beautiful intrinsic 

optical imagining observation of “orientation preference map” that tiles a super-

ficial layer of V1).

Figure 6: Optical Image of the Map of Orientation Preference for a Superficial 
Cortical Layer (2/3) of Macaque. 
Color coding denotes the angle of orientation preference. The black curves denote the borders of ocular 
dominance “columns”, across which input from the retina switches dominance from left to right eye. 
Note the “orientation pinwheel” singularities, and the scale of the individual “tiles”, each containing one 
singularity – 500 μm x 500 μm. (From G. Blasdel, Ref [17, 18].) Copyright held by J. Neuroscience, and 
used for the sole purpose of this educational review web publication.
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The orientation preference of individual cells in the entry layer is placed 

into the model as follows: A small number of LGN cells project to each cortical 

cell; and the receptive field of each cortical cell is a superposition of the receptive 

fields of each LGN neuron in the collection projecting to it, with the receptive 

field centers of the LGN cells displaced slightly from the receptive field center 

of the cortical cell, forming a structured pattern for the receptive field of the 

cortical cell (see Fig 7). The receptive field of a cortical cell is not circularly 

symmetric (as each of its LGN components), but rather has a spatial pattern 

imposed on it by the displacements together with the selection of “on” cells and 

“off” cells which comprise the collection (again, see Fig 7). Thus, the receptive 

field of each cortical cell is spatially larger than that of its LGN components; 

and it has a “sub-field” orientation structure with provides each V1 cell with its 

orientation preference.

Figure 7: Receptive Field 
Structure for Input Layer (4C) 
in Macaque. 
Receptive fields for three layer 4C 
neurons. The visual stimulation for the 
upper row — random gratings; for the 
bottom row — sparse random flashed 
dots. (From Ref32, reprinted from PNAS 
which holds the copyright.)
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Turning to the map of orientation preference that is an ordered tiling 

of the superficial layer, with each tile of O(500μm x 500μm): (See Fig 6) The 

orientation preference of each cell within a tile smoothly changes as one cycles 

the “pinwheel singularity” at center of each tile. These “orientation pinwheels” 

tile the layer, and their orientation preferences extend throughout the depth of 

V1 to form “orientation columns.” We build this ordered pinwheel tiling into the 

model by mapping the orientation preference of each cortical cell to its spatial 

location within the layer.

In this manner, the orientation preference of each cortical neuron and the 

ordered pinwheel map are hard wired into the model. Each entry layer cortical 

neuron receives a spike train from a collection of LGN neurons. The size, location, 

and orientation structure of the receptive field of each entry layer neuron is set by 

the individual locations of the receptive field centers and their designated “on” 

or “off” type of the LGN neurons in the collection of LGN neurons which project 

to the given cortical cell. And this orientation preference is set for each cell, 

respecting the ordered map of orientation preference that tiles the cortical layer.

In addition to orientation preference, V1 neurons also have spatial and 

temporal phase preferences, wavelength preferences, etc. These are not ordered 

within the pinwheel tiling, but experimentally observed to be random. They are 

put into the model through the receptive field construction as described above 

for orientation, but with random (rather than ordered) spatial maps.
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Now we return to the description of the excitatory cortical-cortical 

conductances, that is to the spatial-temporal conductance profiles generated 

by the spiking of presynaptic excitatory cortical neurons. These come in two 

types — (i) temporally fast AMPA and (ii) slow NMDA. (The precise formulas 

are given above.)

The conductance time courses for fast inhibition GGABA−A and slow inhi-

bition GGABA−B have the same form as GAMPA , with time constant τ = 1.67ms and 

7ms, respectively.

We turn now to the spatial patterns of the cortical-cortical coupling, as 

represented by Kσ
j -
E

k
 , Lσ

j -
E

k
  and Mσ

j
I
-k for short range excitatory neurons, long range 

NMDA excitatory neurons, and inhibitory neurons, respectively. The “short 

range” kernels Kσ
j -
E

k
  and Mσ

j
I
-k are taken to be isotropic Gaussians, with length 

scales of 200 μm for excitation and 100 - 200 μm for inhibition, respectively. 

These length scales are consistent with anatomical studies. The length scales 

of the “long range” kernels Lσ
j -
E

k are much longer, O(2000 μm), and more impor-

tantly are not spatially isotropic.

Rather, these long distance connections preferentially couple neurons 

of similar orientation preference.11 See Fig 8, which shows this non-isotropic 

connectivity for tree shrew.

All kernels are normalized to unity; hence, the coupling strengths are 

solely described by the parameters SEE, SIE, SEI, and SII.
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The spatial couplings from the excitatory neurons have two important 

features in addition to the Gaussian fall-off with spatial distance. The first is 

that the spatial excitatory coupling is very sparse, with only 10-15% of the spatial 

connections active. In the model, which neurons are connected to each other 

is determined randomly from the outset, thus “hard-wiring” a sparse coupling 

architecture into the model. And second, we assume that those cells with fewer 

LGN afferents have more of their excitatory synapses taken up by cortical-cor-

tical excitatory connections. Thus, each neuron’s SσE is inversely proportional to 

the its NLGN, the number of its LGN afferents. A linear scaling of the coupling 

strengths insures this assumption. Finally, the “mean coupling strengths” are 

modified by a small random spread of values, to ensure qualitatively the diver-

sity that is observed in both the “driven” and “spontaneous” firing rates.

Figure 8: Lateral Connections and 
Orientation Preference Map for a Super-
ficial Cortical Layer of Tree Shrew. 

Connections, as displayed by a staining procedure, over the optical image of orientation preference map. The 
injection site for the dye is denoted in white; the neuronal connections to this injection site denoted in black. 
Note the injection site is in a “blue-green” region of orientation preference; the local (~500 μm) connections 
are rather isotropic, connecting to “all” preference angles; the long-range connection selectively connect to 
neurons of “like-orientation” (“blue-green” preference). From Ref [30]. Copyright held by J. Neuroscience, 
and used for the sole purpose of this educational review web publication.
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3. Summary of Results from the Large Scale Model of a Layer of V1

In this section, we give brief overviews of the understanding of cortical 

mechanisms that have resulted from our large-scale computational model.

1. High Gain and Sparse Connectivity: In the neuroscience commu-

nity, it is generally accepted that the primary visual cortex must operate in a 

regime of “high gain” if it is to be sufficiently sensitive to small changes in the 

visual stimuli. As described in Ref[6], in order for our large-scale computational 

model of V1 to operate reasonably in a high gain regime, the spatial connections 

between excitatory neurons must be sparse, and/or the synaptic connections 

must frequently experience synaptic failure. Otherwise, as the cortical network 

approaches a sufficiently high gain regime, the network activity becomes far too 

intense — entering if you like an “epileptic regime.” We find that either sparse 

connectivity (probabilistically hardwired into the network initially) or synaptic 

failure (probabilistically and dynamically determined at each time a spike 

approaches a synapse) will stabilize the network in the high gain regime. For 

example, if we use only sparse connectivity, we find that the network performs 

well with only 10-15% of the neurons coupled to each other. The high gain regime, 

or operating point, itself is one of steep gain just below a region of steeper gain 

which supports simultaneously two stable operating points, one of low gain and 

a second of very high gain. The model performs best at a gain rate just below this 

“bi-stable domain.” We emphasize that, within the model cortex, stability of this 

high gain region seems to demand sparse connectivity (or high synaptic failure).
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2. High Gain Regime and Large Conductances: High gain is 

achieved through large excitatory and inhibitory conductances, and therefore 

large total conductance. This high gain regime holds for both the excitatory and 

inhibitory neurons. These high conductances result in effective relaxation time 

scales that are very short (compared, for example, to the “leakage” time scale. 

The equations take the form

C d Vσ
j =−g L(Vσ

j−E L)−gjσE(t)[Vσ
j−E E)−gjσI(t)[Vσ

j−E I] —
  dt

= −gjσT(t)[Vσ
j−Vσ

j,eff (t)]

where

g jσT(t)  = g L + g jσE (t)  + g jσI(t) ,

Vσ
j,eff (t)  =

 g LE L + g jσE(t)E E + g jσI(t)E I		   —————  .		  g L + g jσE (t)  + g jσI(t)

 Thus, for large total conductance g jσT(t)>> gL, the voltage Vσ
j(t) quickly 

relaxes to the effective reversal potential

Vσ
j(t) → Vσ

j,eff (t)

This approximation is valid because the computational cortex operates 

in a high conductance regime. This rapid relaxation of the voltage to the effec-

tive reversal potential Vσ
j,eff (t)  is extremely useful for understanding the mecha-

nisms of the computational cortex, by providing an analytical representation of 
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the voltage Vσ
j(t) explicitly in terms of the conductances12. This approximation 

unveils the mechanisms that underlie the network responses of the computa-

tional model cortex to stimulation, and thus provides insight into the possible 

mechanisms that underlie the biological cortex’s response properties.

3. Properties of individual cells within network: Individual cells, 

within network, respond preferentially to properties of the stimuli. For example, 

cells respond preferentially to specific angles of orientation (of edges) in the 

stimuli; that is, a given cell will fire spikes strongly to a given angle of orienta-

tion of the stimuli, and when that angle is changed, it fires less — firing very 

little to angles nearly 90 degrees from the optimal angle. Moreover, individual 

cells’ selectivity to the preferred angle (as measured by the half-width of the 

cells firing rate as a function of the angle of stimulation) differs from cell to 

cell — from “sharply tuned” cells with narrow half-widths that are good “orien-

tation detectors” to cells that are “broadly tuned” with large half-widths that are 

poor “orientation detectors.” This orientation specificity of individual neurons 

extends to specificity for other stimulus properties such as phase (in time and 

space) and spatial and temporal wavelength.

In addition, individual cells within network respond to stimuli with 

varying degrees of linearity. Some cells respond to sinusoidal stimulation linearly 

as a sinusoid (at the same temporal and spatial frequency as the stimulus), while 

others respond very nonlinearly, with distorted wave forms at multiple spatial 

and temporal harmonics. In the literature, cells that respond linearly are called 
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“simple cells”, while cells that respond nonlinearly are termed “complex cells.”

These individual cellular response properties do not vary with time, or 

with repetitive stimulation. That is, to a first approximation, these specific indi-

vidual neuronal response properties seem to be fixed in time.

Moreover, there is no evidence that these individual cellular response 

properties are the result of bio-physical properties of the individual cells. Indeed, 

in isolation from each other, the cells appear to be bio-physically identical. Thus, 

the distinct response properties of individual cells within network must result 

from network properties such as the coupling or “wiring” architecture of the 

neurons within the network, together with their coupling strengths.

Computational models can identify coupling architectures that will 

achieve the observed response properties of individual cells within network. 

One important issue is the extent to which observed response properties are 

caused by the “feed-forward” nature of the network, which require “feed-back” 

from recurrent connections within the cortical layer, and which depend upon 

“feed-back” connections between the cortical layer and other cortical layers or 

other “higher” regions of the cortex. Our single input layer model can be used to 

investigate (in the model) the relative importance of “feed-forward” and “recur-

rent within layer” connections.

Another important issue is the degree to which “preferential coupling” 

of neurons is required to produce the observed response properties of individual 
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neurons. The idea for “preferential coupling” dates back to Donald Hebb, who 

in 1949 formulated the principle that “neurons that fire together, wire togeth-

er.”13 The idea is that, as the synaptic coupling architecture is set up during 

the development stage of the young mammal, the synaptic coupling strength 

is increased between neurons which fire together; thus, the coupling strength 

between two neurons with similar stimulus preference, such as similar orienta-

tion preference, will strengthen and become much stronger than the coupling 

strengths between neurons with different stimulus (orientation) preferences. 

Thus, Hebbs’ principle, if correct, would imply that in the mature mammal, 

neurons with similar preferences are more strongly coupled than neurons with 

different preferences. Our model of an input layer of V1 for macaque monkey 

show that preferential coupling is not necessary to achieve the observed cellular 

responses; or more accurately, local (within 500 μm) coupling architecture that 

is not “preferential”, but rather isotropic, decreasing in strength isotropically 

with distance, is sufficient to produce the observed cellular responses.

As an example, consider orientation. LGN cells have circularly symmetric 

receptive fields and thus no orientation preference. However, as described 

in Section 2, a small collection of LGN neurons projecting collectively to one 

V1 neuron can impart a preferred orientation to that cortical neuron. In our 

model, we assume each cortical neuron is driven by O(15-20) LGN neurons. 

By choosing patterns for each collection of LGN circularly symmetric receptive 

fields, cortical cells in the input layer 4Cα have orientation preference, orienta-
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tion selectivity, and receptive fields with sub-field structure — all in agreement 

with experiment (See Fig 7). Thus, we find in the model that the orientation 

preference of the V1 neuron is set by the feed- forward LGN drive, and that 

the feed-forward orientation selectivity is modified, but only modestly, by the 

recurrent feedback connections within layer 4Cα. Thus, the model is primarily 

feed-forward with regard to the orientation tuning of cortical cells, with the 

local circuitry isotropic without preferential microcircuits14 (See also Ref 6.)

However, the original model had strong, well focused for orientation, 

LGN drive — with O(15-20) LGN neurons projecting to each cortical input layer 

neuron. Recent detailed analysis15 of the existing anatomical data has shown 

that, for macaque monkey, the LGN drive is much weaker and less focused for 

orientation — with only O(5) LGN neurons projecting to each cortical input 

layer neuron. In that work, Chariker, Shapley and Young have constructed a 

large scale computational model with realistic weak cortical drive. In their 

model, the orientation preference is again set by the feed-forward LGN drive; 

however, the orientation selectivity is modified (usually enhanced) significantly 

by the recurrent feed-back connections.

Turning to the linear/nonlinear properties of cortical neurons, we 

consider simple/complex cells within the computational model. First, consider 

complex cells, with their nonlinear relationship to the visual stimulus. While 

there are several realizations of these nonlinear response properties, perhaps the 

most sensitive is frequency doubling — the cells respond at twice the temporal 
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frequency of a sinusoidal (contrast reversal, standing, grating) drive. Within our 

model, complex cells are achieved with two modeling assumptions: i) those cells 

with fewer LGN afferents (NLGN) have more of their excitatory synapses taken up 

by cortical-cortical excitatory connections; and ii) each neuron’s cortical-cortical 

recurrent excitatory coupling strengths are inversely proportional to the number 

of LGN neurons afferents (NLGN). That is, the weaker the LGN drive, the stronger 

the recurrent drive. Within the model “pure” complex cells receive no LGN 

drive and thus the strongest recurrent drive. In Ref[5], we show that this model 

produces a reasonable proportion of complex cells with the proper nonlinear 

response properties such as frequency doubling, and with orientation selectivity 

properties which are in modest agreement with experimental observations.

Perhaps more surprising than the nonlinear behavior of complex cells is 

the very existence of simple cells — cells in the nonlinear cortex that behave so 

linearly in response to the visual stimulus. Recall these cortical cells are driven 

by the LGN and recurrently by other cells in the layer. Both the LGN drive and 

the cortical network are very nonlinear. How, acting together, do they produce 

responses as linear as those observed in simple cells? Although too detailed 

mathematically to present in this essay, in Ref [16] we show, through both 

mathematical analysis and computer simulation, exactly how the nonlinear 

cortical-cortical inhibition cancels the nonlinearity in the excitatory LGN drive, 

and produces in the computational model a response that is linear and in close 

agreement with experimental observations of the behavior of simple cells. 
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Moreover, Ref [6] shows that our model contains a realistic distribution of both 

simple and complex cells.

4. Role of ordered vs disordered preference maps: Feature prefer-

ences, such as orientation preference, tile the cortical layer as a “feature map”. 

These maps can be ordered (as orientation maps in Macaque monkey17,18) or 

disordered (as the random “salt and pepper” map of spatial frequency prefer-

ence19). As described in Section 2: The orientation preference of cells in each 

layer of V1 form an ordered tiling of the layer, with each tile of O(500μm x 

500μm). (See Fig 6) The orientation preference of each cell within a tile smoothly 

changes as one cycles the center of the tile, at which an orientation preference 

“singularity” exists. These “orientation pinwheels”, with their pinwheel singu-

larities, tile the layer. How does this orientation mapping affect the response 

properties of cells within the layer?

Within the model Ref[6,13], we can clearly describe the effect of the 

ordered map of orientation preference on the orientation response properties 

of a neuron relative to its position within the tile. Consider first a simple cell, 

located near a pinwheel singularity. It will receive strong excitation from the 

LGN drive (from which it derives its orientation preference), moderate excitation 

from other nearby excitatory neurons within the tile (at all orientation prefer-

ences), and strong inhibition from nearby inhibitory neurons (again, at all orien-

tation preferences). These recurrent cortical-cortical drives will sum, to average 

over all orientation preferences; thus, the recurrent excitation and the recurrent 
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inhibition reaching a neuron will have no orientation preference. Moreover, 

inhibition will dominate and cancel excitations away from the preferred angle 

set by the LGN drive, resulting in simple cells near pinwheel centers that are 

very selective for orientation. In contrast, complex cells near pinwheel centers 

will not be tuned for orientation as they receive no LGN drive and a summed 

recurrent drive that is independent of orientation.20

Far from a pinwheel singularity, all nearby cells have similar orientation 

preferences; hence, both simple and complex cells will be quite well tuned for 

orientation — a result that holds for both densely and sparsely connected networks.

Our large-scale computational model shows that all of the results 

described above can be obtained without preferential coupling architectures. In 

the models, whether the neurons are coupled densely or sparsely, the coupling 

is isotropic, falling off with distance between neurons; there is no explicit pref-

erential coupling between neurons with similar feature preferences, and hence, 

no explicit implementation of Hebb’s principle. On the other hand, ordered 

maps can provide an “effective” preferential coupling architecture. Consider 

the orientation map described above. Except for those near pinwheel singular-

ities, most neurons reside in “iso-orientation” domains, and thus the coupling 

to nearby neurons will be between neurons with similar orientation preference. 

The ordered map itself provides an implicit realization of preferential coupling, 

at least with regard to orientation.
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While the map of orientation preference is ordered for cat and Macaque, 

it is a disordered random “salt and pepper” map for mouse visual cortex. Careful 

measurements have established that, even in the absence of an ordered orien-

tation map, neurons in the mouse visual cortex have very similar orientation 

selectivity and tuning properties to those of Macaque. (See ref[21,22] for recent 

measurements.) Moreover, optogenetic techniques on mouse provide informa-

tion about the orientation preference of the cortical-cortical excitatory input to 

V1 neurons [23,24] that is not available for Macaque. These techniques show that 

the cortical-cortical excitatory input to each cell in V1 has orientation preference 

that is aligned with the orientation preference of the LGN input to each cell. In 

unpublished work25, we develop a large-scale computational model of an input 

layer to mouse V1, and study which properties of individual cells within the 

network can be obtained without preferential coupling, and which properties 

require preferential coupling of micro- circuits which selectively couple neurons 

with similar orientation and temporal phase preferences. Oriented cortical-cor-

tical excitatory input to an individual cell that is aligned with the orientation 

preference of the LGN input to that cell seems to require explicit preferential 

coupling — in accordance with Hebb’s principle.

5. Spatial-temporal patterns of cortical activity: The discovery 

of voltage sensitive dyes with limited toxicity has enabled neural scientists to 

develop optical imaging techniques that can be used to measure directly cortical 

activity throughout rather wide regions of superficial layers of the cortex, with 
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excellent spatial and temporal resolution26,27. The techniques are invasive, and 

can only be used on animals, with most of the experiments performed on cats. 

The first observations were performed on anesthetized cats, observing spon-

taneous activity (in the absence of visual stimulation) in superficial layers of 

primary visual cortex28,29. The observed spatial-temporal patterns of sponta-

neous activity were remarkably similar to those patterns observed under stimu-

lation by oriented gratings, except that the patterns were meta-stable. A sponta-

neous pattern would appear that is similar to a pattern stimulated by a grating 

at one angle of orientation, then disappear and be replaced by the appearance of 

a pattern at a different angle of orientation. An irregular sequence of patterns is 

thus generated, with both the angles of orientation and the times of the jumps to 

a new angle very irregular. What mechanism creates these seemingly random 

sequential patterns of spontaneous cortical activity?

The investigation of this phenomena with a large-scale computational 

model required extending our local model (of 1 mm2 of cortical area holding 

approximately 4 pinwheels) to a more global model (of ~16 mm2 of cortical area 

containing 64 pinwheels). In the global model, long-range synaptic connections 

had to be included.

Anatomical studies30 have shown striking differences between short-

range and long-range synaptic connections, as summarized for tree shrew in Fig 

8 from Ref [29]. This figure traces the local and long-range excitatory synaptic 

connections to those neurons in a dye injected region of small lateral area — all 
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superimposed on the ordered map of orientation preference. The small injection 

region contains neurons whose angles of orientation preference are labeled as 

blue-green. The tracings show that, locally, the neurons in the injection region 

are isotropically connected to neurons with all angles of orientation preference, 

but that the long- range connections preferentially couple neurons with the same 

“blue-green” angles as the injection region. Other studies show that these long 

range connections definitely contain the “slow” NMDA excitatory receptors, 

that act on long time scales of O(80ms).

In Ref [7] we extend the computational model to an effective model of a 

superficial layer of V1, on a global scale of 16 mm2, incorporating long-range 

couplings that prefer similar angles of orientation preference and act on the 

long time scales of NMDA. The spontaneous activity that we observe in this 

computational model has an irregular sequence of meta-stable oriented states 

that is very similar to the observed spontaneous cortical activity in anesthetized 

cat — irregular jumping between oriented states that occurs on the observed 

time scales. Moreover, although too detailed to describe here, analysis of the 

computational model, grounded upon the large conductance relaxation to the 

“effective reversal potential” described above, unveils the specific mechanisms 

by which the model produces these meta-stable state: The irregular patterns 

of cortical activity are initiated by small groups of excitatory neurons firing 

together over short time frames, coupled to neurons with similar orientation 

preference a long distance away through the orientation selective long-range 
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connections. Thus, oriented patterns of cortical activity are generated, with the 

NMDA long-time scale producing the time scale of the temporal jumps in the 

patterns. Although the initial sequential firings are rapidly quenched due to 

inhibition, the long range cortical activity is maintained over O(100ms) time 

scales through long-range connections with NMDA receptors.

Optical illusions are frequently used by neural scientists to understand 

the operation of the cortex. Although illusionary with respect to perceptions 

of the outside world, these are actual patterns of cortical activity; thus, under-

standing the mechanisms that generate the cortical activity associated with 

optical illusions enables us to better understand the mechanisms under which 

the cortex operates. Most illusions involve higher order cortical activity such as 

attention; thus, they can’t be explained solely with an input region such as the 

primary visual cortex, but must involve higher order regions. However, there are 

a few illusions that seem “pre-attentive”, and thus might be explainable within 

the primary visual cortex. One such is the “pre-attentive” line motion illusion. 

As shown in Fig 9, a stimulus that consists of (i) a square of light flashed on 

for a short time, then (ii) flashed off and held off for a short period of time, 

and finally (iii) followed by the flash of long bar of light (of width equal to the 

square) is a stimulation that is perceived as either a square growing into the 

bar, or a moving square — although in reality there is absolutely no motion or 

growth in the visual stimulus.
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Figure 9a: Cortical Activity in a Superficial Layer of Cat V1, that is Visually Stimulated 
by a Moving Square. Top row: Schematic of the moving square, as a function of time labeled in ms; 
Second row: Voltage sensitive dye images of the cortical activity; Third row: Computer simulations of the 
cortical activity as represented by voltage; Bottom row: Computer simulations of the cortical activity as 
represented by NMDA conductance profile.

Figure 9b: Cortical Activity in a Superficial Layer of Cat V1, that is Caused by Visual 
Stimulation by the “Line Motion Illusion”. Top row: Schematic of the visual stimulus, as a func-
tion of time labeled in ms; Second row: Voltage sensitive dye images of the cortical activity; Third row: 
Computer simulations of the cortical activity as represented by voltage; Bottom row: Computer simulations 
of the cortical activity as represented by NMDA conductance profile. Note the striking agreement between 
the experimental images of the cortical activity in Figures 9a and 9b; note also the good agreement between 
the experimentally observed cortical activity and that generated by the numerical simulations. The exper-
imental results are from Ref [29] (reprinted with permission from Nature, which holds the copyright) and 
the numerical simulations from Ref[7] (reprinted from PNAS, which holds the copyright).
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Experiments in Grinvald’s Laboratory used voltage sensitive dye optical 

imagining to observe the patterns of cortical activity in anesthetized cat gener-

ated by the line-motion illusion stimulus — comparing the patterns generated 

by a growing bar with that of the static flashed square and bar of the line motion 

illusion. The observed cortical activity was identical under the two different 

stimulations.

In Ref[8] we stimulated a large scale model of an effective superficial layer 

of V1 with these line-motion illusion stimuli. As in the experiment, the space-time 

cortical activity was identical for the static and moving stimuli, Fig 9. Moreover, 

we were able to analyze and identify, using the “effective reversal potential” of 

the large conductance state, the mechanisms by which the computational model 

produced the identical cortical activity for the two distinct stimuli – identifying 

the crucial roles played by the long range orientation preserving connections and 

the slow NMDA synapses. Thus, we were able to identify the possible mecha-

nisms by which the mammalian cortex achieves the line-motion illusion.

4. Conclusion

In this essay, we have described our large-scale computational model of 

a layer of mammalian primary visual cortex, and used this model to illustrate 

manners in which large-scale models can contribute to our understanding of the 

operation of mammalian cortical systems. In the construction of the large-scale 

model, biology provides many realistic constraints on the system — constraints 
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that restrict one’s freedom to realize within the model abstract theoretical 

constructs that are proposed to be the mechanisms by which the cortex achieves 

its responses. It is important to emphasize that proper modeling requires that 

one model, with one specification of parameters, be used for every experiment. 

One cannot use different models, with different parameter values, to achieve 

agreement with different experimental observations. Further, when a large-scale 

model actually achieves biologically realistic results, one can identify and analyze 

in detail the mechanisms by which the model achieves these responses — and 

thus identify the likely mechanisms by which the mammalian cortex functions.

The cortical operating point, or state of cortical activity, at which our 

model of a layer of mammalian primary visual cortex operates may be summa-

rized as follows: high conductance; strong inhibition; neuronal firing that is 

driven by temporal fluctuations in voltage (since the strong inhibition keeps 

mean voltages below the firing threshold); high gain; very sparse connectivity 

(which enables operation at high gain without instabilities); ordered patterns of 

cortical activity (generated by connections, often long range connections, which 

are selective to feature maps and operate on the long time scales of NMDA 

receptors); sequential, but temporally irregular, initiation of patterns of cortical 

activity by small groups of excitatory neurons firing together over short time 

frames (firings which are rapidly quenched due to inhibition, but with cortical 

activity that is maintained over O(100ms) time scales through long-range 

connections with NMDA receptors). This is the cortical operating point of the 
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1 Anatomical staining studies show that the neurons reside in distinct layers, 

with the density of neurons and the density of distinct neuronal types varying from 

layer to layer, as well as neuronal projections to and from other cortical regions varying 

from layer to layer.	

2 Visual information enters through the retina and is transmitted along the 

visual pathway from the retina, through the lateral geniculate nucleus (LGN), to the 

“entry layers” of V1, and on to other cortical regions (see Fig 1). Of course, this “feed 

forward” pathway is a part of a complex system of feedback pathways — within layers, 

between layers, and between cortical regions.	

3 For this binary sequence, time is discretized into small bins or windows of a 

few ms in duration, tn = n Δ, n = 0,1,2,......; the presence or absence of a spike within the 

nth bin is denoted by a “1 or 0”, and the sequence is then a binary temporal sequence of 

0s and 1s. These sequences are usually depicted by “raster plots” that depict the spike 

time of the neuron as a function of time.

4 Neurons come in many distinct types, but perhaps the most fundamental clas-

sification is between excitatory and inhibitory neurons, that is between neurons whose 

voltage spikes excite other neurons and those whose voltage spikes inhibit other neurons.	

large-scale model cortex — an operating point that can be analyzed in detail for 

the computational model. Thus, it is strongly suggested to be the operating point 

of the biological cortex.
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