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All physical systems in equilibrium obey the laws of thermodynamics. 

The first law asserts the conservation of energy. The second law has a variety of 

formulations, one of which is the following: Suppose that in a work cycle a heat 

engine, such as a locomotive, extracts Q1 units of heat from a heat reservoir, 

such as a boiler, at temperature T1, performs W units of work, moving a load, for 

example, from to bottom to the top of a hill, and then exhausts the remaining 

Q2 = Q1 − W units of heat to a heat sink, such as a lake, at a lower temperature 

T2, T2 < T1. Let E = W/Q1 denote the efficiency of the conversion of heat into 

work. Then the second law tells us there is a maximal efficiency

	 Emax =   T1 − T2 		  ————
		        T1

depending only on T1 and T2, so that for all heat engines, and all work cycles, E 

is never greater than Emax ,

	 E ≤ Emax .

Nature is so set up that we just cannot do any better.

On the other hand, it is a very old thought going back at least to 
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Democritus and the Greeks, that matter, all matter, is built out of tiny constitu-

ents — atoms — obeying their own laws of interaction. The juxtaposition of these 

points of view, the macroscopic world of tangible objects such as boilers, heat 

engines and lakes, and the microscopic world of atoms, presents a fundamental, 

difficult and long-standing challenge to scientists: Namely, how does one derive 

the macroscopic laws of thermodynamics from the microscopic laws of atoms? 

The special, salient feature of this challenge is that the same laws of thermody-

namics should emerge no matter what the details of the atomic interaction. In 

other words, on the macroscopic scale on which we live, physical systems, be 

they composed of benzene molecules, for example, or gold atoms in a bar, should 

exhibit universal behavior. Indeed, it is the very emergence of universal behavior 

for macroscopic systems that makes possible the existence of physical laws.

This kind of thinking, however is not common in the world of math-

ematics. Mathematicians tend to think of their problems as sui generis, each 

with its own special distinguishing features. Two problems are regarded as “the 

same” only if some “isomorphism,” explicit or otherwise, can be constructed 

between them. For example, consider

Problem 1. How many distinct pairs of numbers can be formed from 

the numbers 1, 2, 3, 4? For example, {1 ,  2} ,  {2 ,  4} , … etc.

Problem 2. Let A = Abby, B = Brenda, C = Charles, and D = Daisy, be four 

tennis players. How many different double games can they play? For example:
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Let 1 correspond to A, 2 to B, 3 to C and 4 to D. We can construct an 

isomorphism between Problems 1 and 2 in the following way: To any pair of 

numbers, say {1 ,2} , we associate the corresponding players, {A, B} in this case, 

and place Abby and Brenda in the lower court. The game is then set up by 

placing the remaining players Charles and Daisy in the upper court, as follows: 

B  D A  D

C  D

A  C

, 	 and so on.

{1 ,2}

{2 ,4}

Similarly:

and so on.

A  C

A  B

B  D

B  C

A  B

B  D
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Now as every game can be achieved in this way, and as different pairs 

of numbers give rise to different games, we see that there are precisely as many 

games (there are six! Exercise!) as there are distinct pairs of numbers from 1 to 4. 

With this isomorphism established, a mathematician would conclude that Prob-

lems 1 and 2 are “the same.” Remark: Here we are distinguishing the game where 

AC play in the upper court, from the game in which they play in the lower court:

In general it is very difficult to determine whether two problems are “the 

same” in the above strict mathematical sense. In recent years, however, univer-

sality in the sense of macroscopic physics, when no isomorphism is known or 

apparent, has started to emerge in a wide variety of mathematical problems, and 

the goal of this article is to illustrate some of these developments. As we will see, 

there are problems from diverse areas, often with no discernible, mechanistic 

connections, and with no known isomorphisms as in Problem 1/Problem 2 above, 

all of which behave, on some appropriate scale, in precisely the same way. The 

list of such problems is varied, long and growing, and points to the emergence of 

what one might call “macroscopic mathematics.”

A  C B  D

B  D A  C

≠
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A precedent for the kind of result that we are going to describe is given by 

the celebrated central limit theorem of probability theory, where one considers 

independent, identically distributed variables, x1, x2, … , with average 0. For 

example x1 could be the outcome of flipping a (fair) coin, +1 for heads and −1 for 

tails: Then the 

average of x1 = (+1) × (probability of a heads) + (−1) × (probability of a tail) 

= 1 × 1/2 + (−1) × 1/2 = 0.

Following on, x2 is the outcome of flipping the coin again, and so on. Alter-

natively x1 could denote the outcome of choosing a number uniformly between 

−1 and 1, and x2, x3, … , denote subsequent choices. The central limit theorem 

tells us that whatever the distribution of x1, x2, … , the probability distribution for 

the sum x1 + x2 + ⋯ + xn, suitably scaled, converges, as n becomes large, to the 

famous bell curve. In other words, the bell curve is universal, independent of the 

distribution of x1, x2, …

In order to describe the emergence of “macroscopic mathematics,” we 

must consider the theory of random matrices. Recall that a k × l matrix M is a 

rectangular array of numbers with k rows and l columns. For example:

		  M = ( 1   10    9 )7    6    4

is a 2 × 3 matrix with M11 = 1 in the first row and first column, M23 = 4 in the 

second row and third column, and so on. If k = l, the matrix is square, for example:
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M = ( 7   17  )8  64

is a 2 × 2 matrix with M12 = 17, etc. Now associated to any square k × k matrix 

there are k distinguished numbers y1, y2, … , yn called eigenvalues, or character-

istic values. For general matrices, the eigenvalues y1, y2, … , yk could be complex 

numbers, but if M is a symmetric matrix, the eigenvalues y1, … , yk are all real 

numbers. A matrix is symmetric if the entry in row i and column j is the same 

as the entry in the jth row and ith column. Thus:

M = ( 1   −1  )−1   1

is symmetric as M12 = −1 = M21. For this 2 × 2 matrix, the eigenvalues are 

obtained by solving the quadratic equation (y − 1|2 − 1 = 0, i.e. y − 1 = +1 or 

−1, so that y = 0 or 2. Thus y1 = 0 and y2 = 2.

In order to understand what an eigenvalue is from a physical point 

of view, consider, for example, a swing in a park with constituent parts 

consisting of a seat, two ropes, a crossbar and two side stands. It turns out 

that the dynamics of the swing can be described by a matrix M where M12, say, 

describes the connection between the seat and one of the ropes, M23 describes 

the connection between the rope and the crossbar, and so on. Now when you 

push your daughter in the swing, you discover that there is a special frequency, 

the so-called resonant frequency, with the property that if you push the swing 

precisely at that frequency, the swing resonates with your pushing and moves 



UNIVERSALITY FOR MATHEMATICAL AND PHYSICAL SYSTEMS

THE SILVER DIALOGUES 7

back and forth, high and easily, with little effort on your part. That resonance 

frequency corresponds to an eigenvalue of the matrix M for the swing system.

A random matrix M is a matrix in which the entries M11 , M12 , … of the 

matrix are chosen randomly. For example a random 2 × 2 Bernoulli matrix M 

is one in which the four entries M11, M12, M21, M22 take on the values 1 or −1 

depending on the flip of a coin, +1 for heads and −1 for tails. If M is random, 

then the eigenvalues y1, y2, … of M are clearly also random. Now the remarkable 

and serendipitous fact is that many systems, physical and mathematical, behave 

like the eigenvalues of a (large) random matrix.

Let me illustrate how this works with two example, the first from a card 

game, and the second from a bus scheduling problem in Cuernavaca, Mexico.

Example 1. Consider the solitaire card game known as patience sorting. 

The game is played with N cards, numbered 1, 2, … , N for convenience. The 

deck is shuffled and the first card is placed face up on the table in front of the 

dealer. If the next card is smaller than the card on the table, it is placed face up 

on the top of the card; if it is bigger, the card is placed to the right of the first 

card, making a new pile. If the third card in the deck is smaller than one of 

the cards on the table, it is placed on top of that card; if it is smaller than both 

cards, it is placed as far to the left as possible. If it is bigger than both cards, it is 

placed face up to the right of the pile(s), making a new pile. One continues in 

this fashion until all the cards are dealt out. Let qN denote the number of piles 
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obtained. Clearly qN depends on the particular shuffle which we denote by S, 

and we write qN = qN (S).

For example, if N = 6 and S = 341562, where 3 is the top card, 4 is the 

next card and so on, then patience sorting proceeds as follows:

	   	  1 	   1	       1		    1
3	 3 4	  3 4	   3 4 5	       3 4 5 6	   3 4 5 6

and so q6(S) = 4.

Question 1. Suppose all the shuffles S are equally likely. If each card 

is of unit size, how big a table does one typically need to play patience sorting 

with N cards? Or more precisely, how does the probability distribution for qN = 

qN (S) behaves as N → ∞?

Example 2. The city of Cuernavaca in Mexico (population about 

500,000) has an extensive bus system, but there is no municipal transit 

authority to control the city transport. In particular, there is no time table, 

which gives rise to so-called Poisson-like phenomena, with bunching and long 

waits between buses. Typically the buses are owned by drivers as individual 

entrepreneurs, and all too often a bus arrives at a stop just as another bus is 

loading up. The driver then has to move on to the next stop to find some fares. 

In order to remedy the situation the drivers in Cuernavaca came up with a 

novel solution: They introduced “recorders” at specific locations along the bus 

routes in the city. The recorders kept tract of when buses passed their locations, 
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and then transmitted this information, via various pre-arranged hand signals, 

to the next driver, who could then speed up or slow down in order to optimize 

the distance to the preceding bus. The upshot of this ingenious scheme is that 

the drivers do not lose out on fares and the citizens of Cuernavaca now have 

a reliable and regular bus service. In the late 1990s two Czech physicists with 

interest in transportation problems, M. Krbálek and P. Sĕba, learned about the 

buses in Cuernavaca and decided to investigate. For about a month they studied 

the statistics of the bus arrivals on a particular line close to the city center.

Question 2. What did Krbálek and Sĕba learn about the statistics of the 

bus system in Cuernavaca?

Quite remarkably, the answer to both questions is given by random 

matrix theory. In particular, in Example 1, as N goes to infinity, the probability 

distribution for qN, suitably centered and scaled, converges to the distribution 

function for the largest eigenvalue of a (large) random Hermitian2 matrix. (It 

turns out that on average the table should be wide enough to accommodate 11 

piles side by side.) In Example 2, at a fixed location (bus stop) Krbálek and Sĕba 

found that the statistics of waiting times, that is, the times between the arrival 

of one bus and the next, was precisely described by the separation between the 

eigenvalues of a (large) random Hermitian matrix.

This is universality in the sense of macroscopic physics. There is no 

isomorphism/correspondence as in Problems 1/2, connecting patience sorting 
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or the buses in Cuernavaca, to the eigenvalues of a random matrix. Nevertheless, 

on the appropriate scale, all these systems behave statistically in the same way.

Problems 1 and 2 are just two examples of the burgeoning field of 

macroscopic mathematics.

1 Part of this article is taken from the author’s address to the International 

Congress of Mathematics, Madrid, Spain, 2006. See, Intl. Congress of Mathematics, 

Vol. I, 125–152, Eur. Math. Soc. Zurich, 2007	

2 Hermitian is the analog of symmetric when the entries M11, M12, . . . of a 

matrix M are complex numbers.	


