The Effects of Judicial Decisions on Public Support for Same-Sex Marriage

Kevin Orszak
Senior Honors Thesis
NYU Politics Department 2011
I. Introduction

In the United States today, same-sex marriage remains one of the most hotly-contested social issues. Ask anyone, for or against same-sex marriage, and they will tell you a lot is at stake: whether it’s the sanctity of marriage or equal rights for LGBT people. In the wake of referenda such as Proposition 8 in California and Question 1 in Maine, which overturned legalized same-sex marriage, the sheer power of public opinion is evident. Furthermore, over half of the states where same-sex marriage is currently legal, this policy was the product of state supreme court decisions. In this study, I aim to investigate how court decisions affect public opinion. Do decisions legalizing same-sex marriage result in a backlash that is ultimately detrimental to the LGBT rights movement? Or do people look to elite institutions like state supreme courts to form their opinions? Is this the same for court decisions that deny equal marital rights to LGBT couples? These are some questions I hope to answer with this study.

I also aim to investigate how different demographic groups react to such a decision. Do the highly educated respond in a different manner to same-sex marriage decisions from the lesser educated? Do liberals react differently than conservatives? I hope to address these questions, as well, in my study.

Existing studies have made their conclusions based on states that had generally high support for same-sex marriage at the time of the decision (such as Massachusetts). Now that more time has passed, there is a broader range of states that have legalized same-sex marriage via the courts, allowing for a more varied look at how the public responds to these decisions.
Despite the numerous studies regarding aggregate and individual-level opinion responses to court decisions, a complete consensus has not emerged amongst political science scholars. This is likely due to the complexity and variance of such public opinion responses. In many cases, demographic groups react in different ways to a decision (Johnson and Martin 1998) and, often court decisions see completely different responses issue to issue (Egan and Citrin). Both of these findings suggest that there can be no universal rule that governs how aggregate public opinion will change in response to a decision. However, to structure a more nuanced theory, it is important to review the more universal theories of public opinion response and the past studies that have employed them.

One prominent theory is the legitimation hypothesis. This is the theory that, following the passing of a judicial decision, public opinion will shift towards the court’s opinion (Hoekstra 1995). The legitimation hypothesis puts forth the idea that people turn to elite institutions to affirm or repudiate their own opinions on a given issue. Furthermore, people often take cues from institutional organizations to form their opinions, such as conforming one’s own opinions to that of one’s political party or a trusted judiciary. Both the elite opinion leadership and heuristic approaches support the legitimation hypothesis. Valerie Hoekstra tested this theory in her 1995 study, “The Supreme Court and Opinion Change: An Experimental Study of the Court’s Ability to Change Opinion.” The study was centered around a controlled survey of 135 SUNY Stony Brook students studying social sciences. Each was given an article to read on an issue referencing action taken by the Supreme Court, Congress, or a nonpartisan think tank. The
students’ opinions on the given issue were surveyed before and after reading the article to see if learning of the Supreme Court’s decision had any effect on their stance on the given issue. Hoekstra’s study found that, in general, the student’s opinions did indeed shift to become more in line with the Supreme Court, as compared to control groups. However, Hoekstra’s study used a very small sample, comprised of a very specific type of respondent (college-age students studying social sciences). Therefore, the results likely suffered from selection bias.

Another notable study of the legitimation hypothesis was Brandon Bartels and Diana Mutz’s study, “Explaining Processes of Institutional Opinion Leadership” (Bartels and Mutz 2009). This study randomly assigned 854 respondents of a national survey to read of an endorsement by the Supreme Court or Congress on one of two issues, affirmative action or flag burning. As a control group, some randomly assigned respondents received no such endorsement. This study found that the respondents who received the Supreme Court endorsement did, on average, shift their opinion towards the Court’s preference. However this study chose issues such as flag burning that were not hot topics in the national dialogue in 2009. Same-sex marriage, on the other hand, is a very widely discussed issue at the moment, and it is easy to imagine that respondents might react differently to a court decision on a relatively settled issue from a court decision on a more controversial one.

The natural antithesis of the legitimation hypothesis is the backlash hypothesis, or the idea that perhaps the public sees an unelected court as overstepping its place in a given decision. By this theory, public opinion would subsequently shift away from that court’s preference. This hypothesis is mentioned in early studies (Hoekstra 1995, Johnson and Martin 1998) but ultimately not supported by them. In his article “Beyond Backlash:
Assessing the Impact of Judicial Decisions on LGBT Rights,” Thomas Keck writes that backlash has occurred in response to every LGBT rights decision (Keck 2009). Keck’s study is largely a historical account of past court cases that have addressed LGBT issues, and their respective backlashes. While Keck informally analyzes public opinion, he does not create a formal quantitative model, nor does he control for other aspects that may have shifted public opinion such as political mood. Furthermore, when Keck writes about “backlash” he is not only talking about public opinion backlash in direct response to a judicial decision but also public opinion backlash due to political countermobilizations that the decision caused. By including the latter, the discussion strays from being strictly about the courts’ ability to shift public opinion. I intend to study specifically the courts’ role in public opinion change and am not interested in including the effects of political countermobilizations on public opinion in my study.

Both the legitimation and backlash hypotheses focus on changes in aggregate public opinion. However, other studies look at opinion change at a more specific level, breaking the population down into demographic groups. One prevalent theory that works on this level of opinion change is the polarization hypothesis, put forth by Timothy Johnson and Andrew Martin’s 1998 study, “The Public’s Conditional Response to Supreme Court Decisions.” The polarization hypothesis states a court decision might not cause a change in aggregate public opinion, but it polarizes group opinions to become more homogeneous. In other words, this theory says that when a court makes a decision (particularly in a landmark decision, or what Johnson defines as the first time the Supreme Court addresses an issue) the gap between the opinions of different demographic groups will become greater and intra-group preferences will become more similar. This rests on the idea that
when an issue is first introduced, intra-group interaction solidifies one opinion amongst a given demographic group. Johnson and Martin’s study looks at the effect of various Supreme Court cases on public opinion of abortion and the death penalty. This study uses polling data from CBS News/New York Times taken in the summer and fall of 1989 for the issue of abortion and data from the General Social Survey taken from 1972 to 1988 to look at the issue of the death penalty. Johnson and Martin compare public opinion before and after a variety of decisions on the two issues, breaking the respondent pool down by race, gender, education and a variety of other demographic characteristics. While this study found greater polarization amongst certain demographic categories (education and church attendance for the issue of abortion and education and party identification for the death penalty), it failed to include any control variables.

This issue was identified and improved upon as studies began combining aggregate level analysis and individual level analysis (Stoutenborough 2006). This combination allows for the observation of both legitimation/backlash effects as well as polarization effects that a court’s decision might have. In addition, this study is one of the first studies of public opinion response to judicial decisions that focuses on LGBT rights cases. Stoutenborough wanted to test cases that were highly salient in the media and therefore would be well known to the mass public. Therefore, to fit this condition, Stoutenborough focused on the Supreme Court decisions that have addressed LGBT rights (Bowers v. Hardwick, Romer v. Evans, Boy Scouts of America v. Dale, and Lawrence v. Texas). Later studies further emphasized the importance of focusing on LGBT rights cases, finding that the reaction to Lawrence v. Texas (2003) differed from reactions to other analogous landmark cases addressing other, non-LGBT issues (Egan and Citrin). Stoutenborough
created a dichotomous variable for each case, assigning, for every year, a “0” if the decision wasn’t passed down in that year or a “1” if it was. To test the effect of the Court decisions on public opinion, if any, this study used polling data from Gallup from the years 1977 to 2005 regarding whether or not the respondent thought same-sex relations should be legal. Stoutenborough controlled for the number of AIDS cases in a given year, the percent of the population that was liberal, whether or not the television show “Will and Grace” aired in that year and the number of local governments that passed antidiscrimination legislation in that year, under the supposition that these factors might affect public opinion on LGBT rights. This study found that public opinion regarding the legality of same-sex relations dropped after both *Bowers* and *Lawrence*.

However this study’s results were flawed due to a confounding variable: the order of the questions asked of polled respondents (Egan, Persily, Wallsten 2008). Immediately following the *Bowers v. Hardwick* decision, Gallup changed the order of the questions. Polling questions asked before *Bowers* placed various other gay rights questions before questions about legalizing same-sex relations. Post-*Bowers*, however, Gallup began asking questions about legalizing same-sex relations before any other gay rights questions. In the chapter “Gay Rights” from their book, *Public Opinion and Constitutional Controversy* (2008), Egan et al compared polls that asked questions about legalizing same-sex first with those that asked LGBT rights questions first and found that those polls beginning with questions about same-sex relations saw less support for legalizing same-sex relations by an average of 12 percentage points. Thus, when Gallup changed the composition of their polls, it resulted in an artificial downward shift in public opinion that was wrongfully interpreted by Stoutenborough et al as a legitimization response to *Bowers*. However, as the first state
supreme court decision that addressed equal marital rights for same-sex couples was
downed in 1999, I will not have to account for this discrepancy in question order that
occurred in the 80’s.

More recent studies have investigated whether the courts really have any effect at
all on public opinion. In their study, Egan and Citrin put forth the idea that perhaps the
Supreme Court has less power to shift public opinion than was originally thought. Their
study was comprised of a controlled survey, conducted by the Cooperative Congressional
Election Study twice (once in 2006 and once in 2008). The survey asks the respondents’
opinions on various issues and the respondents’ opinions on the legitimacy of the Court as
an institution. In the second survey (given to the same people, two years later), a randomly
assigned group (made up of half of the respondents) was given a short description about
how the Court ruled on six high profile cases. The other half, the control group, was given
no such descriptions. The study found that hearing of the Supreme Court’s decision on a
certain matter had little effect on that person’s opinion on the issue. This theory is labeled
the *stability hypothesis*: the idea that people’s opinions are relatively fixed and the court has
little power to change them. However, this study found that one issue proved to be an
exception to its stability theory and that was the issue of gay rights. Egan and Citrin’s study
included only one LGBT rights case which doesn’t allow for general statements to be made
about LGBT rights cases. In fact, this indicates a general shortcoming in focusing on federal
cases on this issue of LGBT rights (as all previous studies I mentioned have): the fact that
there simply aren’t many high profile federal cases that have addressed LGBT rights. And
by definition, high profile cases are the only judicial decisions of which the general public is
aware and therefore have the potential to affect public opinion. I would instead like to
focus on same-sex marriage cases on the state level, to be able to make broader conclusions about LGBT rights cases.

Egan and Persily’s study, “Court Decisions and Trends in Support for Same-Sex Marriage” (2009) focuses on public opinion shifts in response to state court decisions that provided legal recognition of same-sex marriage. Their study takes polling data from CNN, Gallup and Pew over the past 13 years regarding whether same-sex marriage should be legalized, creating a scatter plot and extracting the given trend. They observe state-specific trends in public opinion for the six states that passed down State Supreme Court decisions favoring LGBT rights. This study compares the various states by denoting the year of the decision as year “0” and considering all other years in terms of how long before or after the decision was passed. Furthermore, this study compares the statewide trend in public opinion to the national trend to see if on a state level public opinion rose or fell more quickly or more slowly than the national trend. However, as mentioned earlier, this study was conducted soon after three same-sex marriage decisions (CA, CT, and IA) and did not have enough polling data to include these states. The other three (MA, NJ, and VT) (two of which, NJ and VT did not grant same-sex marriage rights but did grant civil union rights) all had generally high support for same-sex marriage at the time of the decision and thus there might exist a selection effect (perhaps states with relatively high support for same-sex marriage would react to the decision differently than states without). As there is now more data available, I will include CA, CT, and IA in my study. In particular, I hope the inclusion of Iowa, a state with much lower relative support for same-sex marriage, will contribute a greater level of complexity to my study.
III. Research Design

Theory

Ultimately, there has been extensive research done on the various universal theories (the legitimation hypothesis, the backlash hypothesis, the polarization hypothesis, and the stability hypothesis), but few studies have incorporated these theoretical understandings together. It seems more conceivable that no one theory would apply in every case, but rather perhaps the different demographic segments of the public respond differently to a same-sex marriage decision. Particularly, those who have completed higher education tend to be more well-informed on matters of important state supreme court decisions. Therefore, I would expect to see less response in low-education individuals to state supreme court decisions addressing same-sex marriage rights. Furthermore, Egan and Citrin found that those identifying as liberal tend to be more accepting of court decisions, even those with which they disagree, than those identifying as conservative. I would therefore expect conservatives to react more in line with the backlash hypothesis and liberals the legitimation hypothesis. Moreover, if both of these effects are the case, perhaps I would also expect to see an interaction effect between education and ideology, where low education liberals and conservatives alike do not change their opinion in response to court decisions (stability hypothesis), highly educated liberals change their opinion in line with the decision (legitimation hypothesis) and finally, highly educated conservatives change their opinion in contrast with the decision (backlash hypothesis).

To test this, I will use two hypotheses and their respective null hypotheses. My first hypothesis is that having had a decision granting same-sex marriage rights in one’s state has an effect on in individual-level support for same-sex marriage. The respective null
hypothesis would be that having had such a decision in the past in one’s state has no effect on individual-level support for same-sex marriage.

My second hypothesis is that having had a decision denying same-sex marriage rights in one’s state has an effect on individual-level support for same-sex marriage. The respective null hypothesis would be that having had such a decision in the past in one’s state has no effect on individual-level support for same-sex marriage.

I will represent the above hypotheses in the terms of the logistic regression model I will use in the “Methods” section below.

My independent variables will be whether or not a court decision granting same-sex marriage rights occurred in the respondent’s state prior to the poll and whether or not a court decision ruling against same-sex marriage rights occurred in the respondent’s state prior to the poll. I include this to see if the court decision granting or denying same-sex marriage rights in a state does indeed change the individual-level opinion regarding same-sex marriage. My dependent variable will be individual-level opinion regarding the legalization of same-sex marriage.

There are a number of factors which could affect an individual’s opinion and therefore should be controlled for in my study. First of all, changes in the political mood, unrelated to LGBT rights, may have an effect on the public opinion of specific issues like LGBT rights (Stimson 1998). Therefore, I would like to control for ideological trends at the time using a coding method for ideology described below.

I will also control for average church attendance on the state level at a given time. I would expect that during periods of increased church attendance, average support for LGBT rights such as same-sex marriage would decline.
Another important control I will include is state and regional effects. By including dummy variables for each state and region of states, I will be able to capture in my model the differing effects on one’s opinion of same-sex marriage among these regions. It is my hope that this inclusion will capture a large amount of the variation between states.

Finally, I will include demographic controls such as age, gender, race, and education. Past studies have indicated that belonging to different groups in each of these has at least some effect on one’s opinion regarding same-sex marriage.

Data

To measure these variables I have accumulated data from twelve Gallup polls, taken from October 2003 to May 2009, that ask if the respondent favors legalizing same-sex marriage. I will analyze these polls based on the year they were taken. As these polls also ask questions regarding age, education, party, ideology, income, and race, amongst other things, I can use these responses to control for these various demographic categorizations as well.

In every case, my data includes polls taken both before and after the decisions granting or denying same-sex marriage rights were passed down (the exception being Alaska, as national polls do not poll Alaskan residents). The six states that have legalized same-sex marriage or granted similar rights are as follows: Massachusetts (2003), New Jersey (2006), Vermont (1999), California (2008), Connecticut (2008), and Iowa (2009).

The seven states that have had state court decisions denying same-sex marriages are Alaska (1999), Arizona (2003), Indiana (2005), Maryland (2007), New York (2006), Oregon (2005), and Washington (2006).
Methods

Because the dependent variable (support for same-sex marriage) is a dummy variable, I will use a multiple logistical regression model. The variables of this model are as follows:

SSM: Indicates the respondent’s position on whether same-sex marriage should be legalized. Coded as 0 for opposes same-sex marriage and 1 for supports same-sex marriage.

PRODECISION: Indicates whether a decision granting same-sex marriage rights was passed down in the respondent’s state before the given poll was taken. Coded as 0 for no decision and 1 for a pro-gay decision.

ANTIDECISION: Indicates whether a decision denying same-sex marriage rights was passed down in the respondent’s state before the given poll was taken. Coded as 0 for no decision and 1 for an anti-gay decision.

YEAR: The year the given poll was taken.

IDEO: The respondent’s ideology, coded as 1 for very conservative, 2 for conservative, 3 for moderate, 4 for liberal, and 5 for very liberal

CHURCH: Average church attendance as indicated from the following polling responses: “At least once a week” coded as 1, “Almost every week” coded as 2, “About once a month” coded as 3, “Seldom” coded as 4, and “Never” coded as 5.

MALE: Coded as 1 for male respondents and 0 for female respondents.

AGE: The respondent’s age.

WHITE: Coded as 1 if respondent identifies as “White/Caucasian,” and 0 if not.
BLACK: Coded as 1 if respondent identifies as “Black/African-American,” and 0 if not.

HISPANIC: Coded as 1 if respondent identifies as “Hispanic,” and 0 if not.

EDUC: Indicates the last level of education that the respondent has completed. Coded as 1 for 8th grade or less, 2 for some high school, 3 for completed high school degree, 4 for some college, 5 for associates degree, 6 for a completed college degree, and 7 if the respondent has completed a postgraduate degree.

Finally, I will include a variable for every state and region of states (but one), each indicating whether the respondent lives in that state or region (1) or not (0). In my equation below, I will represent these 50+ variables and their respective coefficients as F.

Given the above variables, the equation I will use for this study is as follows (noting the inclusion of interaction variables to test various interaction effects):

\[F(\text{Support for Same-Sex Marriage}) = \beta_0 + \beta_1 \text{PRODECISION} + \beta_2 \text{ANTIDECISION} + \beta_3 \text{IDEO} + \beta_4 \text{EDUC} + \beta_5 (\text{IDEO} \times \text{EDUC}) + \beta_6 (\text{IDEO} \times \text{EDUC} \times \text{PRODECISION}) + \beta_7 (\text{IDEO} \times \text{EDUC} \times \text{ANTIDECISION}) + \beta_8 \text{YEAR} + \beta_9 \text{CHURCH} + \beta_{10} \text{MALE} + \beta_{11} \text{AGE} + \beta_{12} \text{WHITE} + \beta_{13} \text{BLACK} + \beta_{14} \text{HISPANIC} + F + e \]

In terms of these variables, my hypotheses are as follows:

\[H_{A1}: \beta_1 \neq 0 \quad H_{A2}: \beta_2 \neq 0 \]
\[H_{01}: \beta_1 = 0 \quad H_{02}: \beta_2 = 0 \]

I will use a confidence level of \(\alpha = 0.05 \) to test these hypotheses.

Expectations

According to my first hypothesis, \(H_{A1} \), I would expect \(\beta_1 \) to be equal to something other than zero, indicating that pro-gay court decisions do indeed correlate with changes in
individual support for same-sex marriage following the decision. Generally, the value of β_1 would indicate which theory from past literature is supported: the *legitimation hypothesis* (if $\beta_1 > 0$), the *backlash hypothesis* (if $\beta_1 < 0$), or the *stability hypothesis* (if $\beta_1 = 0$).

By my second hypothesis, H_{A2}, I would expect β_2 to be equal to something other than zero as well, indicating that anti-gay court decisions do indeed correlate with changes in individual support for same-sex marriage following the decision. Again, the value of β_2 would indicate which theory is supported: the *legitimation hypothesis* (if $\beta_2 < 0$), the *backlash hypothesis* (if $\beta_2 > 0$), or the *stability hypothesis* (if $\beta_2 = 0$).

If my theory concerning an interaction effect between ideology, education, and whether or not a decision addressing same-sex marriage rights is passed down is true, then I would expect β_6 to be positive, indicating that for liberals in states that have pro-gay rulings, as ones education increases, support for same-sex marriage increases. Furthermore, this would indicate that for conservatives, as education increases, support for same-sex marriage decreases.
IV. Results

Table I: Multiple Logistical Regression Results

Note: As I used a logit model, I have divided the coefficients produced by this model by four (the maximum effect), and produced those figures below:

<table>
<thead>
<tr>
<th>Model</th>
<th>Decision Granting Same-Sex Marital Rights</th>
<th>Decision Barring Same-Sex Marital Rights</th>
<th>Ideology</th>
<th>Education</th>
<th>Ideology * Education</th>
<th>Male</th>
<th>Age</th>
<th>Church Attendance</th>
<th>Black</th>
<th>Constant (β_0)</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model #1 (without State and Regional Effects)</td>
<td>0.140</td>
<td>0.104</td>
<td>0.000705</td>
<td>-0.11725</td>
<td>0.05525</td>
<td>-0.110</td>
<td>-0.00583</td>
<td>0.0740</td>
<td>-0.06625</td>
<td>-0.25</td>
<td>9,444</td>
</tr>
<tr>
<td></td>
<td>(0.000)**</td>
<td>(0.000)**</td>
<td>(0.973)</td>
<td>(0.000)**</td>
<td>(0.000)**</td>
<td>(0.000)**</td>
<td>(0.000)**</td>
<td>(0.000)**</td>
<td>(0.029)**</td>
<td>(0.001)**</td>
<td></td>
</tr>
<tr>
<td>Model #2 (with State and Regional Effects)</td>
<td>0.0298</td>
<td>-0.0225</td>
<td>0.00298</td>
<td>-0.0115</td>
<td>0.00540</td>
<td>-0.118</td>
<td>-0.00628</td>
<td>0.0705</td>
<td>-0.0463</td>
<td>-56.4075</td>
<td>9,443</td>
</tr>
</tbody>
</table>

*p<0.1 **p<0.05 ***p<0.01
Discussion of Data

Before I can discuss the statistical significance of my results, I must first address the state and regional variables included in my model. When I ran the regression with the state and regional effects, which comprised of over fifty dummy variables (one for each state and region), very few came up with significant p-values (in fact, less than a fourth of those variables had p-values less than my α value of 0.1). I determined that the inclusion of some forty statistically insignificant variables was considerably distorting the results of my model and therefore, I present the results above from the model with the state and regional effects and the model without.

I will first address the chief independent variables of this study: whether a given respondent's state saw a state supreme court case granting or denying same-sex marital rights. Both of these variables turned out relatively large, positive coefficients (that were statistically significant) when using the model with no state and regional effects, and statistically insignificant coefficients when using the model with such regional effects.

Turning to ideology and education, both models produced relatively consistent results. The models turned out statistically significant coefficients for education that were negative and relatively large. Ideology produced coefficients in both models that had high p-values and thus were statistically insignificant. However, the coefficients associated with the interaction between education and ideology was relatively high and statistically significant.

I must also note that the variables tracking the three-way interaction effects between ideology, education and the two court decision variables consistently produced statistically insignificant results. I therefore removed these terms from my final model, to
avoid possible distortion of my results from their inclusion. I had included the results with these interaction terms in the appendix.

Next, we turn to the control and demographic variables. For the age variable, both models produced relatively small, negative coefficients with p-values of 0.000. Both models also produced relatively large, positive coefficients for church attendance with p-values of 0.000. The dummy variable that took gender in account (1 for male, 0 for female), produced relatively large, negative coefficients in both models with p-values of 0.000. The variables that tracked the respondents race, however, produced coefficients that were much less significant than the other demographic variables. Both dummy variables that tracked whether the respondent’s race was white and Hispanic saw coefficients that were very statistically insignificant. The variable that tracked whether the respondent identified as black showed a medium sized, negative coefficient in both models, however only coefficient from the model without the state and regional effects had a significant p-value (0.029). The other model’s coefficient had an unacceptable p-value of 0.139. Finally, the income variable constantly turned out statistically insignificant coefficients.

Conclusion

Unfortunately, the insignificance of the state and regional effects in my model presented me with two unappealing options: a model with no controls for regional effects and a model with mostly insignificant controls that wildly distort the results. The two models seem to produce contradicting results with respect to the two chief independent variables of this study (the decision variables). I will first consider what possible conclusions can be made based on the model with no state and regional effects, then I will consider the results of the second model.
The first model, in which the regional effects have been omitted, produces statistically significant coefficients for both decision variables. The fact that these are positive and relatively large, indicates that when a state supreme court hands down both a decision granting same-sex marriage rights and a decision barring same-sex marriage rights, an individual is more likely to support same-sex marriage. In terms of the legitimation and backlash hypotheses put forth in previous studies, individuals respond to a decision granting same-sex marital rights per the legitimation hypothesis (he or she changes her opinion to be more in line with that of the court) and individuals respond to decisions barring same-sex marital rights per the backlash hypothesis (she changes her opinion to be less in line with the court. One might synthesize these two effects by saying that whenever a court addresses same-sex marital rights as an issue, individuals are more likely to change their opinion to support same-sex marriage. Why might this be the case? It is likely the case that when either of these decisions is handed down by a state supreme court, the local (and perhaps national) media spend more time reporting on the issue of same-sex marriage. Perhaps when such media saliency is high on this issue, individuals are more likely to change their opinion to support same-sex marriage.

However, as we turn to the results of the model that does take state and regional effects into account, these significant coefficients lose their statistical significance. This could either be due to the distortion of the largely statistically significant regional effects. However, this also might indicant the possible statistical weakness of the decision variables. The fact that all other control variables that were significant in the first model remain significant further supports this notion. I am therefore unable to make conclusions.
about state supreme court decisions addressing same-sex marital rights with any significant level of confidence.

Several of my control variables produced significant results which I will now speak to. While the effect of ideology alone was insignificant, the interaction between education and ideology was not. The positive coefficient, coupled with the large, negative coefficient for education, characterizes a relationship where the low-educated, liberal and conservatives alike, have a low probability of support for same-sex marriage. As education increases, the gap between the two ideologies greatly increases. High-educated liberals are much more likely to support same-sex marriage than their low-educated counterparts and high-educated conservatives a slightly less likely to support same-sex marriage than their low-educated counterparts.

Turning to demographic variables, both models’ coefficients indicate, with significance, that as the age of the respondent increases, that respondent is less likely to support same-sex marriage. This is in line with previous studies that have found the younger generations are much more likely to support same-sex marriage. Next, as we look at gender, both models turn out significant coefficients that are both relatively large and negative. This indicates that male respondents are much less likely to support same-sex marriage than women are. The variable that took into account church attendance also confirms conventional wisdom. The associated coefficient is relatively large and positive, indicating that as the respondent’s frequency of church attendance decreases (bearing in mind that decreased church attendance is coded as a higher number in this variable), support for same-sex marriage increases. Conversely, the more one attends church the less likely he or she is to support same-sex marriage. Finally, as discussed before, most of the
variables accounting for respondent’s race were insignificant. However, in the first model, the variable associated with those identifying as black produced a significant, negative coefficient, indicating that those identifying as black are somewhat less likely to support same-sex marriage than those who don’t. However, the fact that the similar coefficient in the second model was not statistically significant indicates this may be due to regional effects alone (for example, southern states tend to have a higher percent of black residents and southern residents are also less likely to support same-sex marriage).

To conclude, the results of the first model suggest a state supreme court decision, whether granting or denying marital rights to same-sex couples, tends to increase support for same-sex marriage. However, the results of the second model which takes regional effects into account seem to call that conclusion into question. Therefore, based on these results alone, no definite conclusion can be made about the effect of state supreme court decisions on public opinion regarding same-sex marriage.

Suggested Improvements and Areas for Further Study

Given the ambiguous results of this model, it is important to discuss areas of concern upon which could be improved. First of all, it is plausible that states that have had decisions addressing same-sex marriage rights would be different that those states that have not had such decisions and therefore modify their opinions differently in response to court decisions. In fact, Egan and Persily (2009) note that these thirteen states, with both pro-gay and anti-gay decisions, have more liberal opinions on LGBT rights in general than the remaining states. It follows that states with more support for LGBT rights would see more legal activity on the matter and thus be more likely to see decisions addressing same-sex unions. This therefore presents a selection bias into my model that could be skewing
my results. There’s a chance some of the change captured could be due to the fact that these states are more liberal or perhaps due to some confounding factor.

Additionally, there are likely other factors affecting same-sex marriage support not captured in this model. This study was restricted by the limited questions asked of respondents in the past. For example, one factor that likely affects one’s opinion of same-sex marriage is whether or not the given respondent knows someone in their life who identifies as LGBT. However, very few polls in the past have asked this question.

Furthermore, given the fact that there is a small and unique group of states that have seen these types of court decisions, it is important to note that whatever conclusions this study can draw, it cannot make any inferences on what might occur, given a different group of states that have passed down such decisions. In other words, if another state were to issue a pro- or anti-gay decision in the coming years, my study would not be suited to predict how such a decision might affect its resident’s reactions to it, as my study is tailored to make inferences about this specific group of 13 states.

While this study produced some interesting results regarding public support for same-sex marriage, ultimately, more research is needed to make any definitely conclusions about the opinion leadership of state supreme courts.
Table I: Results of Regressions Including Interaction Variables

<table>
<thead>
<tr>
<th></th>
<th>Model #3 (without State and Regional Effects)</th>
<th>Model #4 (with State and Regional Effects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Granting Same-Sex Marital Rights</td>
<td>0.10525 (0.157)</td>
<td>-0.078 (0.348)</td>
</tr>
<tr>
<td>Decision Barring Same-Sex Marital Rights</td>
<td>0.09975 (0.090)*</td>
<td>-0.0455 (0.492)</td>
</tr>
<tr>
<td>Ideology</td>
<td>0.000818 (0.969)</td>
<td>0.0031 (0.885)</td>
</tr>
<tr>
<td>Education</td>
<td>-0.117 (0.000)***</td>
<td>-0.1145 (0.000)***</td>
</tr>
<tr>
<td>Ideology * Education</td>
<td>0.055 (0.000)***</td>
<td>0.05375 (0.000)***</td>
</tr>
<tr>
<td>Ideology * Education * Decision Granting SSM Rights</td>
<td>0.0025 (0.617)</td>
<td>-0.037 (0.467)</td>
</tr>
<tr>
<td>Ideology * Education * Decision Denying SSM Rights</td>
<td>0.000293 (0.944)</td>
<td>0.001763 (0.676)</td>
</tr>
<tr>
<td>Male</td>
<td>-0.11 (0.000)***</td>
<td>-0.118 (0.000)***</td>
</tr>
<tr>
<td>Age</td>
<td>-0.00583 (0.000)***</td>
<td>-0.00628 (0.000)***</td>
</tr>
<tr>
<td>Church Attendance</td>
<td>0.074 (0.000)***</td>
<td>0.0705 (0.000)***</td>
</tr>
<tr>
<td>Constant (β₀)</td>
<td>-0.24875 (0.001)***</td>
<td>-56.3875 (0.000)***</td>
</tr>
<tr>
<td>Observations</td>
<td>9,444</td>
<td>9,443</td>
</tr>
</tbody>
</table>

*p<0.1 **p<0.05 ***p<0.01

Egan, Patrick and Jack Citrin. “Judicial Persuasion and Judicial Legitimacy: Evidence From a Survey Experiment.” (not yet published)

