Quantum Mechanics I Prelim Exam 2018

Instructions: The exam will begin at 2:05 and run until 5:00. In order to pass, most of the credit (∼75%) must be achieved on each of at least 3 questions. The Pauli matrices are:

\[\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

Problem 1: States that maximize angular momentum along the z-axis but do not have an in-plane angular momentum component are often called “cat” states. Consider states defined as:

\[|C(s)\rangle = \frac{|s,m_s\rangle + |s,-m_s\rangle}{\sqrt{2}}, \]

where \(s \) is the total spin eigenvalue and \(m_s \) is the z-axis spin moment. For what values of \(s \) will \(|C(s)\rangle \) fit the above definition of a cat state? Support your answer.

Problem 2: A spin-1/2 particle exists in two-dimensional space, with the following kinetic Hamiltonian:

\[H_K = v_D(p_x\sigma_y - p_y\sigma_x), \]

where \(v_D \) is a constant, \(p_x \) (\(p_y \)) is the x- (y-) axis momentum operator, and \(\sigma_x \) and \(\sigma_y \) are Pauli matrices. (Note: this may be familiar as the massless 2D Dirac Hamiltonian)

(a) Please identify an eigenstate of \(H_K \) with non-zero momentum along the x-axis.

(b) The \(R_x \) operator reflects all kets across the y-axis by flipping the sign of the \(x \) coordinate, and is defined as follows:

\[R_x = \sum_s \int dy \int dx |x,y,s\rangle \langle -x,y,s|, \]

where the sum is over spin orientations in the ±z directions. Consider the action of \(R_x \) on the eigenstate you provided in part (a). Can you identify why \(R_x \) does not commute with \(H_K \)? Would \(R_x \) commute with the classical Hamiltonian of a massive particle, \(H_C = p^2/2m \)?

Problem 3: A spinless particle in a harmonic oscillator potential has eigenstates \(|n\rangle \) with eigenenergies \(E_n = \hbar\omega(n + 1/2) \), and integer eigenvalues \(n \geq 0 \).

(a) Define the density matrix at finite temperature, and provide an equation for the ensemble expectation value \(\langle n \rangle_T \).

(b) Now consider a scenario in which there are many weakly interacting Harmonic oscillators with the same Hamiltonian, each containing one particle. Suppose weak interactions between the oscillators suppress the oscillator frequencies, giving \(\omega(T) = \omega_0(1 - c|n|) \).

For what values of the constant \(c \) is there a local energy minimum with \(|n|=0 \), and for what values is this a global energy minimum? Draw a rough diagram of how \(|n| \) will depend on temperature for \(c > 0 \) and \(c < 0 \) with \(|c| << 1 \), if the system is initialized in the \(|n|=0 \) state and heated rapidly with the constraint that \(|n| \) must evolve continuously.

Problem 4: Consider a massive particle in a 1D space with width \('b' \) and repeating boundary conditions.

Use a superposition of two plane waves to construct a normalized state \(|\Psi\rangle \) for which the expectation value of position \(\langle \Psi | x | \Psi \rangle \) initially moves in the positive direction, and for which quantum amplitude vanishes at the \(x = 0 \).
and \(b \). Evaluate the time dependence of \(\langle \Psi | x(t) | \Psi \rangle \) in terms of the mass \(m \) for \(t \sim 0 \).

Problem 5: For a massive particle in a 1D harmonic oscillator potential, the spatial translation operator
\(T(d) = \exp(-idp/\hbar) \) can be written in terms of ladder operators \(a \) and \(a^\dagger \) that create transitions within the eigenbasis. These operators behave as bosonic annihilation and creation operators. The raising/creation operator is defined as:

\[
a^\dagger = \sqrt{\frac{m\omega}{2\hbar}} \left(x - \frac{i}{m\omega} p \right)
\]

Please write the translation operator in terms of \(a \) and \(a^\dagger \), and show that when acting on the harmonic oscillator ground state \(|0\rangle \), the lowering operator \(a \) is not needed. Represent \(T(d)|0\rangle \) as \(\alpha_0 \exp(\alpha_1 a^\dagger)|0\rangle \), and provide equations for the constants \(\alpha_0 \) and \(\alpha_1 \). You may wish to use the operator exponentiation identity \(\exp(A)\exp(B) = \exp(A + B + [A, B]/2) \), which comes from the Zassenhaus formula, and applies only if \([A, [A, B]] = [B, [A, B]] = 0 \).