Problem 1 (20 points)

Consider a three dimensional rotor \(H = \frac{\vec{L}^2}{2I} \) where \(I \) is the moment of inertia, and \(\vec{L} \) is the angular momentum.

a). What are the energy eigenvalues and eigenfunctions? You can represent the latter in terms of the spherical harmonics \(Y_{lm} \). What is the degeneracy of each level?

b). If now an electric field \(E \) is applied such that the perturbing potential is \(V = dE \cos \theta \), where \(d \) is the dipole moment of the rotor, discuss how all the energy eigenvalues (ground and excited states) are affected in first order in \(V \).

c). Discuss how all the energy eigenvalues are affected to second order in \(V \). To what extent is the degeneracy of the levels lifted?

d). Is the extent to which the degeneracy lifted affected at higher orders (> 2) in perturbation theory? Give your reasoning.

Hint:

\[
\begin{align*}
\cos \theta Y_{00} &= -iY_{10}/\sqrt{3}, \\
\cos \theta Y_{lm} &= a_{lm}Y_{l+1,m} - a_{l-1,m}Y_{l-1,m}, l \geq 1 \\
a_{lm} &= -i\sqrt{(l-m+1)(l+m+1)}/(2l+1)(2l+3)
\end{align*}
\]

(1)

Solution:

a). Eigenfunctions are \(Y_{lm} \), and eigenvalues are \(E_{lm}^{(0)} = \hbar^2 l(l+1)/(2I) \). Each energy level has a degeneracy of \(2l+1 \) corresponding to \(m = -l, -l+1, \ldots, l \).

b). To first order, the energy levels are unaffected.

c). At second order the energy shift is the following for the ground state,

\[
E_{00}^{(2)} = -\frac{d^2 I}{3\hbar^2} E^2
\]

(2)

For the excited states it is,

\[
E_{lm}^{(2)} = \frac{|a_{l,m}|^2}{E_{l,m}^{(0)}} + \frac{|a_{l-1,m}|^2}{E_{l-1,m}^{(0)}} - \frac{d^2 I}{\hbar^2} E^2 \left[\frac{l(l+1) - 3m^2}{l(l+1)(2l-1)(2l+3)} \right]
\]

(3)

Thus the \(2l+1 \) degenerate levels split into \(l+1 \) distinct levels. Except the \(m = 0 \) level, the rest are doubly degenerate. This is because the electric field does not differentiate between states with eigenvalues \(\pm |m| \).

d). \(L_z \) commutes with the total Hamiltonian even with the electric field. Thus the electric field cannot mix states of different \(m \). Moreover the electric field preserves time reversal and therefore does not differentiate between \(m \) and \(-m \). Thus higher orders will not further lift the double degeneracy of the \(m \neq 0 \) states.
Problem 2 (10 points)
Consider a particle of mass m bound to a spherically symmetric potential $U(r)$. Give the WKB quantization condition for the allowed energy levels accounting for a non-zero angular momentum of the particle.

Solution:
The radial part resembles the one-dimensional Schrödinger equation in an effective potential $U_{\text{eff}} = U(r) + \frac{\hbar^2 l(l+1)}{2mr^2}$.

$$-\frac{\hbar^2}{2m} \frac{d^2 u}{dr^2} + U_{\text{eff}}(r)u = Eu$$

(4)

Treating the origin as an infinite wall, the quantization condition becomes

$$\int_0^a p_r dr = (n - 1/4)\pi \hbar, \quad p_r = \sqrt{2m(E - U_{\text{eff}})}$$

(5)

where a is the turning point.
Problem 3 (20 points)
Consider particles of mass \(\mu \) and momentum \(\hbar k \), scattering off of a spherically symmetric potential. Recall that the wavefunction may be written as
\[
\Psi(r, \theta) = e^{ikr \cos \theta} + f(\theta) e^{ikr} / r
\]
(6)
a). Show that for large distances from the scatterer, the radial component of the current density due to interference between the incident and scattered waves is
\[
j_r^{\text{int}} \sim r \to \infty \frac{\hbar k}{\mu} \frac{1}{r} \text{Im} \left[ie^{ikr(\cos \theta - 1)} f^*(\theta) \cos \theta + ie^{ikr(1 - \cos \theta)} f(\theta) \right]
\]
(7)
b). Argue that as long as \(\theta \neq 0 \), the average of \(j_r^{\text{int}} \) over any small solid angle is zero because \(r \to \infty \).
c). Integrate \(j_r^{\text{int}} \) over a small solid angle in the forward direction to derive an expression for:
\[
\int_{\text{forward cone}} j_r^{\text{int}} r^2 d\Omega
\]
(8)
d). Recall number conservation and steady-state implies that \(\vec{\nabla} \cdot \vec{j} = 0 \) where \(\vec{j} \) is the total current density from the incident and scattered particles. Apply this at large distances from the scatterer, and use the results from above, to derive the optical theorem,
\[
\sigma_{\text{scat}} = \frac{4\pi}{k} \frac{\hbar k}{\mu} \frac{1}{r} \text{Im} \left[f(0) \right]
\]
(9)
where \(\sigma_{\text{scat}} \) is the total scattering cross-section defined as \(\sigma_{\text{scat}} = \int d\Omega |f|^2 \) and \(d\Omega = \sin \theta d\theta d\phi \). Hint: It is helpful to use Gauss’s theorem \(\int_{\text{surface}} \vec{j} \cdot d\vec{a} = 0 \).
e). Give a physical interpretation for the optical theorem.

Solution:
a). The radial current density is \(j_r = \frac{k}{2im} (\Psi^* \partial_r \Psi - \Psi \partial_r \Psi^*) \). Then,
\[
\partial_r \Psi(r) = ik \cos \theta e^{ikr \cos \theta} + \frac{ik}{r} f e^{ikr} - \frac{f}{r^2} e^{ikr}
\]
(10)
After some straight-forward algebra, one finds that the current has a part coming entirely from the incident beam, a part coming entirely from the scattered beam, and a part coming from the interference between the two.
b). The interfering terms go as, \(e^{ikr(\cos \theta - 1)} \). In the limit \(r \to \infty \), this is a rapidly oscillating function unless \(\theta = 0 \). Thus the integral over the solid angle is non-zero only around \(\theta \sim 0 \).
c). Here we notice that due to b), \(\int d(\cos \theta) e^{ikr(\cos \theta - 1)} f(\theta) \sim f(0) / (ikr) \). Then one finds,
\[
\int_{\text{forward cone}} j_r^{\text{int}} r^2 d\Omega = \left(\frac{\hbar k}{\mu} \right) \frac{4\pi}{k} \text{Im} \left[f(0) \right]
\]
(11)
d). Use Gauss’s theorem to write
\[
\int_{\text{surface}} \vec{j} \cdot d\vec{a} = 0.
\]
(12)
For a surface of radius \(r \), this reduces to
\[
r^2 \int d\Omega (\Psi^* \partial_r \Psi - \Psi \partial_r \Psi^*) = 0
\]
(13)
After some algebra, the optical theorem can be derived.
e). The optical theorem is a consequence of number conservation. Particles depleted from the forward direction by the scatterer must appear in other directions.