Syllabus - Spring 2017

SP TOCS: Computational Chemistry [CHEM-GA 2672 (001)]

Instructor:

Professor Yingkai Zhang, 1166D Waverly Building,, 212-998-7882, yz22@nyu.edu

Lecture/lab Time and Place:

Tuesday/Thursday, 9:30 AM - 10:45 AM at LSTC_MACLB

Office Hour Time and Place:

Monday, 4:00 PM - 5:00 PM , 1166D Waverly Building

Course website: Class

Course Goal:

- This course is a full-scale introduction to computational chemistry and biomolecular modeling, including special topics on computational-aided drug design..
- to assist you in developing a practical understanding of computational methods (strengths, limitations, applicability)
- to assist you in developing competence in applying these computational methods to molecular modeling.

Reference books

- Molecular Modeling: Principles and Applications, second edition by Andrew R. Leach (Pearson Education EMA, January 2001)
- Essentials of Computational Chemistry, by Christopher J. Cramer, Second Edition, John Wiley & Sons, 2004.

Grading

Homework	(30%)
Exam	(40%)
Final project	(30%)

Late lab report/Final Project policy: each late day deducts 20% of total points. It will not be graded if it is more than 5 days past the due date.

Tentative Schedule

Week		
Jan. 2	Introduction to molecular modeling, visualizations.	
Jan. 2	Exploration of PDB structural database, CSD and PubChem databases.	
Week		
Jan.	Biomolecular structure introduction, homology modeling	
Feb.	Biomolecular visualization: Chimera and Hands-on exercises	
Week		
Feb.	Introduction to Computational Quantum Chemistry	
Feb.	High performance computing, Gaussian and Hands-on exercises	
Week		
Feb. 1	MM force field.	
Feb. 1	High performance computing, Amber and Hands-on exercises	
Week		
Feb. 2	Energy Minimization Techniques and conformation analysis	
Feb. 2	Biomolecular modeling I: Amber and Hands-on exercises	
Week		
Feb. 2	Molecular dynamics simulations	
Mar.	Biomolecular modeling II: simulation, analysis and hands-on exercises	
Week		
Mar.	EXAM 1	
Mar.	Introduction to Statistical Mechanics	
Week		
Mar.	Spring Break, No class.	
Mar.	Spring Break, No class	
Week		
Mar. 2	Solvation modeling: explicit vs. implicit	
Mar. 2	Biomolecular Modeling III: : Modeling solvation effects	
Week		
Mar. 2	Free energy calculations: biomolecular recognition	
Mar. 3	Biomolecular Modeling IV: modeling biomolecular recognition	
Week		
April.	Ligand docking	
April.	Biomolecular Modeling V: Ligand Docking with Vina	
Week		
April.	I Computational analysis of binding interfaces	
April	a Hands-on binding pocket analysis exercise	
VVEEK	j Die mele suler medeling literature die sussier	
April.	Biomolecular modeling literature discussion	• •
April .	biomolecular modeling literature discussion and course project discussion	on
VVEEK		

April 25 Exam II . April 27 Course project Week 15 May 2 May 4 Week 16 Course project Course project

- May 9 Course project presentation May 15 Course project report due